Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Potential and limitations of digital twins to achieve the Sustainable Development Goals


Could computer simulation models drive our ambitions to sustainability in urban and non-urban environments? Digital twins, defined here as real-time, virtual replicas of physical and biological entities, may do just that. However, despite their touted potential, digital twins have not been examined critically in urban sustainability paradigms—not least in the Sustainable Development Goals framework. Accordingly, in this Perspective, we examine their benefits in promoting the Sustainable Development Goals. Then, we discuss critical limitations when modelling socio-technical and socio-ecological systems and go on to discuss measures to treat these limitations and design inclusive, reliable and responsible computer simulations for achieving sustainable development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Snapshot of the Fishermans Bend Digital Twin urban planning overlays.
Fig. 2: Snapshot of the University of Melbourne’s digital twin SDG workflow.
Fig. 3: Snapshot of the University of Melbourne’s digital twin citizen interface.
Fig. 4: Indicative applications of digital twins spanning the 17 SDGs.

Similar content being viewed by others


  1. Wright, L. & Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 7, 13 (2020).

    Article  Google Scholar 

  2. Grieves, M. & Vickers, J. in Transdisciplinary Perspectives on Complex Systems (eds Kahlen, J. et al.) 85–113 (Springer, 2017).

  3. Boschert, S. & Rosen, R. in Mechatronic Futures (eds Hehenberger, P. & Bradley, D.) 59–74 (Springer, 2016).

  4. Tao, F. & Qi, Q. Make more digital twins. Nature 573, 490–491 (2019).

    Article  CAS  Google Scholar 

  5. Niederer, S. A., Sacks, M. S., Girolami, M. & Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1, 313–320 (2021).

    Article  Google Scholar 

  6. Bauer, P. et al. The digital revolution of Earth-system science. Nat. Comput. Sci. 1, 104–113 (2021).

    Article  Google Scholar 

  7. Rosen, R., Von Wichert, G., Lo, G. & Bettenhausen, K. D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC PapersOnLine 48, 567–572 (2015).

    Article  Google Scholar 

  8. Tao, F., Zhang, H., Liu, A. & Nee, A. Y. Digital twin in industry: state-of-the-art. IEEE Trans. Industr. Inform. 15, 2405–2415 (2018).

    Article  Google Scholar 

  9. Cannoodt, R., Saelens, W., Deconinck, L. & Saeys, Y. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nat. Commun. 12, 3942 (2021).

    Article  CAS  Google Scholar 

  10. Bruynseels, K., Santoni de Sio, F. & van den Hoven, J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet. 9, 31 (2018).

    Article  Google Scholar 

  11. Laubenbacher, R., Sluka, J. P. & Glazier, J. A. Using digital twins in viral infection. Science 371, 1105–1106 (2021).

    Article  CAS  Google Scholar 

  12. Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).

    Article  Google Scholar 

  13. Voosen, P. Europe is building a ‘digital twin’ of Earth to revolutionize climate forecasts. Science (2020).

  14. Deren, L., Wenbo, Y. & Zhenfeng, S. Smart city based on digital twins. Comput. Urban Sci. 1, 4 (2021).

    Article  Google Scholar 

  15. Francisco, A., Mohammadi, N. & Taylor, J. E. Smart city digital twin-enabled energy management: toward real-time urban building energy benchmarking. J. Manag. Eng. 36, 04019045 (2020).

    Article  Google Scholar 

  16. Jiang, Y., Yin, S., Li, K., Luo, H. & Kaynak, O. Industrial applications of digital twins. Phil. Trans. R. Soc. Lond. A 379, 20200360 (2021).

    Google Scholar 

  17. Marmolejo-Saucedo, J. A., Hurtado-Hernandez, M. & Suarez-Valdes, R. Digital twins in supply chain management: a brief literature review. In Proc. ICO 2019: Intelligent Computing and Optimization Vol. 1072 (eds Vasant, P. et al.) 653–661 (Springer, 2020).

  18. El-Zahab, S. & Zayed, T. Leak detection in water distribution networks: an introductory overview. Smart Water 4, 5 (2019).

    Article  Google Scholar 

  19. Clemen, T. et al. Multi-agent systems and digital twins for smarter cities. In Proc. 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation 45–55 (ACM, 2021).

  20. Havard, V., Jeanne, B., Lacomblez, M. & Baudry, D. Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. Prod. Manuf. Res. 7, 472–489 (2019).

    Google Scholar 

  21. Onile, A. E., Machlev, R., Petlenkov, E., Levron, Y. & Belikov, J. Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: A review. Energy Rep. 7, 997–1015 (2021).

    Article  Google Scholar 

  22. Dembski, F., Wössner, U., Letzgus, M., Ruddat, M. & Yamu, C. Urban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability 12, 2307 (2020).

    Article  Google Scholar 

  23. Lian, B. et al. Application of digital twins for remote operation of membrane capacitive deionization (mCDI) systems. Desalination 525, 115482 (2022).

    Article  CAS  Google Scholar 

  24. Designing Disruption: the critical role of Virtual Twins in accelerating Sustainability (Dassault Systèmes and Accenture, 2021).

  25. Deng, S. et al. Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J. 7, 7457–7469 (2020).

    Article  Google Scholar 

  26. Engström, R. E. et al. Succeeding at home and abroad: accounting for the international spillovers of cities’ SDG actions. npj Urban Sustain. 1, 18 (2021).

    Article  Google Scholar 

  27. Amirebrahimi, S., Rajabifard, A., Mendis, P. & Ngo, T. A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 61, 317–350 (2016).

    Article  Google Scholar 

  28. Rajabifard, A. et al. in Sustainable Development Goals Connectivity Dilemma (ed. Rajabifard, A.) 243–255 (CRC, 2019).

  29. Sabri, S. & Rajabifard, A. in Sustainable Development Goals Connectivity Dilemma (ed. Rajabifard, A.) 199–211 (CRC, 2019).

  30. Assarkhaniki, Z., Sabri, S. & Rajabifard, A. Using open data to detect the structure and pattern of informal settlements: an outset to support inclusive SDGs’ achievement. Big Earth Data 5, 497–526 (2021).

    Article  Google Scholar 

  31. Vinuesa, R. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 11, 233 (2020).

    Article  CAS  Google Scholar 

  32. Karvonen, A. et al. The ‘New Urban Science’: towards the interdisciplinary and transdisciplinary pursuit of sustainable transformations. Urban Transform. 3, 9 (2021).

    Article  Google Scholar 

  33. Bettencourt, L. M. A. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).

  34. Acuto, M. & Parnell, S. Leave no city behind. Science 352, 873 (2016).

    Article  CAS  Google Scholar 

  35. Kapteyn, M. G., Pretorius, J. V. & Willcox, K. E. A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat. Comput. Sci. 1, 337–347 (2021).

    Article  Google Scholar 

  36. Ragnedda, M. & Gladkova, A. (eds) Digital Inequalities in the Global South (Springer, 2020).

  37. Pick, J. B. & Azari, R. Global digital divide: influence of socioeconomic, governmental, and accessibility factors on information technology. Inf. Technol. Dev. 14, 91–115 (2008).

    Article  Google Scholar 

  38. Chinn, M. D. & Fairlie, R. W. The determinants of the global digital divide: a cross-country analysis of computer and internet penetration. Oxf. Econ. Pap. 59, 16–44 (2007).

    Article  Google Scholar 

  39. Rodriguez, F. & Wilson, E. J. Are Poor Countries Losing the Information Revolution? (World Bank, 2000).

  40. Niu, J., Tang, W., Xu, F., Zhou, X. & Song, Y. Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis. ISPRS Int. J. Geoinf. 5, 66 (2016).

    Article  Google Scholar 

  41. Schrotter, G. & Hürzeler, C. The digital twin of the city of Zurich for urban planning. J. Photogramm. Remote. Sens. Geoinf. Sci. 88, 99–112 (2020).

    Google Scholar 

  42. United Nations Statistics Division in The Sustainable Development Goals Report 2019 (United Nations, 2019);

  43. Derudder, B. & Van Meeteren, M. Engaging with ‘urban science’. Urban Geogr. 40, 555–564 (2019).

    Article  Google Scholar 

  44. Bai, X. et al. Networking urban science, policy and practice for sustainability. Curr. Opin. Environ. Sustain. 39, 114–122 (2019).

    Article  Google Scholar 

  45. Hillier, B. in Digital Urban Modeling and Simulation Vol. 242 (eds Arisona, S. M. et al.) 24–48 (Springer, 2012).

  46. Smajgl, A., Brown, D. G., Valbuena, D. & Huigen, M. G. Empirical characterisation of agent behaviours in socio-ecological systems. Environ. Model. Softw. 26, 837–844 (2011).

    Article  Google Scholar 

  47. Karlsson, J. M., Bring, A., Peterson, G. D., Gordon, L. J. & Destouni, G. Opportunities and limitations to detect climate-related regime shifts in inland Arctic ecosystems through eco-hydrological monitoring. Environ. Res. Lett. 6, 014015 (2011).

    Article  Google Scholar 

  48. Laikre, L. et al. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).

    Article  Google Scholar 

  49. Edmonds, B. & Meyer, R. (eds) Simulating Social Complexity: A Handbook (Springer, 2013).

  50. Slater, T. Shaking Up the City: Ignorance, Inequality, and the Urban Question (Univ. California Press, 2021).

  51. Brusaporci, S. in 3D Printing: Breakthroughs in Research and Practice (ed. Information Resources Management Association) 333–360 (IGI Global, 2017).

  52. Zou, J. & Schiebinger, L. AI can be sexist and racist—it’s time to make it fair. Nature 559, 324–326 (2018).

    Article  CAS  Google Scholar 

  53. Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

    Article  Google Scholar 

  54. Zhao, Z. et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. 751, 141749 (2021).

    Article  CAS  Google Scholar 

  55. Tzachor, A., Devare, M., King, B., Avin, S. & Ó hÉigeartaigh, S. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 4, 104–109 (2022).

    Article  Google Scholar 

  56. Chen, Y. & Landry, D. Capturing the rains: comparing Chinese and World Bank hydropower projects in Cameroon and pathways for south–south and north nouth technology transfer. Energy Policy 115, 561–571 (2018).

    Article  Google Scholar 

  57. Stilgoe, J., Owen, R., & Macnaghten, P. in The Ethics of Nanotechnology, Geoengineering and Clean Energy (eds Maynard, A. & Stilgoe, J.) 347–359 (Routledge, 2020).

  58. Stahl, B. C. & Wright, D. Ethics and privacy in AI and big data: implementing responsible research and innovation. IEEE Secur. Priv. 16, 26–33 (2018).

    Article  Google Scholar 

  59. Jirotka, M., Grimpe, B., Stahl, B., Eden, G. & Hartswood, M. Responsible research and innovation in the digital age. Commun. ACM 60, 62–68 (2017).

    Article  Google Scholar 

  60. Kaissis, G. et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3, 473–484 (2021).

    Article  Google Scholar 

  61. Transforming our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

Download references


This paper was made possible through the support of a grant from Templeton World Charity Foundation, Inc. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of Templeton World Charity Foundation, Inc. We thank Y. Chen from the University of Melbourne for supporting the production of Figs. 13.

Author information

Authors and Affiliations



A.T., S.S., C.E.R., A.R. and M.A. developed the paper jointly and all contributed equally to the writing of the text.

Corresponding author

Correspondence to Asaf Tzachor.

Ethics declarations

Competing interests

A.T., C.E.R., S.S. and M.A. declare no competing interests. A.R. manages the Centre for Spatial Data Infrastructures and Land Administration (CSDILA) at the University of Melbourne. CSDILA developed the Fishermans Bend Digital Twin proof of concept in partnership with the Department of Environment, Land, Water and Planning (DELWP), State Government of Victoria, Australia.

Peer review

Peer review information

Nature Sustainability thanks Thomas Clemen, Fabian Dembski, Andrew Karvonen and Jack Stilgoe for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzachor, A., Sabri, S., Richards, C.E. et al. Potential and limitations of digital twins to achieve the Sustainable Development Goals. Nat Sustain 5, 822–829 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics