Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon


Growing demand for minerals is increasing pressure to open protected areas (PAs) for mining. Here we develop spatially explicit models to compare impacts among five policy scenarios to downgrade combinations of PA to allow mining in the Brazilian Amazon. We found downgrading (opening) the region’s entire PAs network to develop an additional 242 mineral deposits would cause 183 km2 of deforestation from mining, half of this in highly biodiverse regions. This scenario would also require 1,463 km of new roads that facilitate access to the region, causing indirect deforestation (estimated to be 40 times larger than direct mining clearing) and forest fragmentation. Downgrading fewer PAs would halve the impacts of mine expansion but require longer access roads per additional deposit mined to avoid crossing areas still protected. Promoting sustainable development while safeguarding biodiversity in mineral-rich regions requires strategic long-term planning that includes identifying no-go areas critical to conservation and designing policies to reduce infrastructure impact when providing access to new mining areas.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scenarios of PAs downgrading in the study region with respective road network required to access mineral deposits.
Fig. 2: Direct and indirect deforestation and the proportion within areas with high biological importance.
Fig. 3: Fragmentation and deforestation over 30 years of development.
Fig. 4: Road extent to show impacts on areas with high biological importance as consequences of downgrading Indigenous lands.

Data availability

All data supporting the findings of this study are either publicly available online via the referenced source or can be obtained directly from the corresponding author upon request.


  1. Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).

    Article  Google Scholar 

  2. Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).

    Article  Google Scholar 

  3. Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    Article  CAS  Google Scholar 

  4. Sonter, L. J., Barrett, D. J., Soares-filho, B. S. & Moran, C. J. Global demand for steel drives extensive land-use change in Brazil’ s Iron Quadrangle. Glob. Environ. Change 26, 63–72 (2014).

    Article  Google Scholar 

  5. Siqueira-Gay, J., Soares-Filho, B., Sánchez, L. E., Oviedo, A. & Sonter, L. J. Proposed legislation to mine Brazil’s Indigenous lands will threaten Amazon forests and their valuable ecosystem services. One Earth 3, 356–362 (2020).

    Article  Google Scholar 

  6. El Bizri, H. R., Macedo, J. C. B. M., Plaglia, A. P. & Morcatty, T. Q. Mining undermining Brazil’s environment. Science 353, 2–3 (2016).

    Article  Google Scholar 

  7. Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).

    Article  CAS  Google Scholar 

  8. Rudke, A. P. et al. Impact of mining activities on areas of environmental protection in the southwest of the Amazon: a GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020).

    Article  Google Scholar 

  9. Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).

    Article  CAS  Google Scholar 

  10. Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    Article  Google Scholar 

  11. Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).

    Article  Google Scholar 

  12. Data Release Version 2.0 (Conservation International and World Wildlife Fund, 2019);

  13. Bebbington, A. J., Humphreys, D., Aileen, L., Rogan, J. & Agrawal, S. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).

    Article  CAS  Google Scholar 

  14. Paiva, P. F. P. R. et al. Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29, 19–38 (2020).

    Article  Google Scholar 

  15. Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. (2020).

  16. Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manage. 180, 409–420 (2016).

    Article  Google Scholar 

  17. Kobayashi, H., Watando, H. & Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 84, 459–468 (2014).

    Article  Google Scholar 

  18. Craig, M. D., White, D. A., Stokes, V. L. & Prince, J. Can postmining revegetation create habitat for a threatened mammal? Ecol. Manage. Restor. 18, 149–155 (2017).

    Article  Google Scholar 

  19. Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

    Article  Google Scholar 

  20. Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).

    Article  Google Scholar 

  21. Siqueira-Gay, J. & Sánchez, L. E. Keep the Amazon niobium in the ground. Environ. Sci. Policy 111, 1–6 (2020).

    Article  CAS  Google Scholar 

  22. Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).

    Article  Google Scholar 

  23. Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29, 635–644 (2014).

    Article  Google Scholar 

  24. Whitehead, A. L., Kujala, H. & Wintle, B. A. Dealing with cumulative biodiversity impacts in strategic environmental assessment: a new frontier for conservation planning. Conserv. Lett. 10, 195–204 (2017).

    Article  Google Scholar 

  25. Jenner, N. Making Mining ‘Forest-Smart’: Executive Summary Report (World Bank, 2019);

  26. Renca: Situação legal dos direitos minerários da reserva nacional do cobre (WWF, 2017).

  27. Soares-Filho, B. S., Cerqueira, G. C. & Pennachin, C. L. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Modell. 154, 217–235 (2002).

    Article  Google Scholar 

  28. Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).

    Article  Google Scholar 

  29. Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).

    Article  Google Scholar 

  30. Rorato, A. C. et al. Brazilian Amazon Indigenous peoples threatened by mining bill. Environ. Res. Lett. 15, 1040a3 (2020).

    Article  Google Scholar 

  31. Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. M. Mining threatens isolated Indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, (2022).

  32. Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).

    Article  Google Scholar 

  33. Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).

    Article  CAS  Google Scholar 

  34. Tallis, H., Kennedy, C. M., Ruckelshaus, M., Goldstein, J. & Kiesecker, J. M. Mitigation for one & all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34 (2015).

    Article  Google Scholar 

  35. Bull, J. W. et al. Quantifying the “avoided” biodiversity impacts associated with economic development. Front. Ecol. Environ. (2022).

  36. Gastauer, M. et al. Mine land rehabilitation: modern ecological approaches for more sustainable mining. J. Clean. Prod. 172, 1409–1422 (2018).

    Article  Google Scholar 

  37. Souza, B. A., Rosa, J. C. S., Siqueira-Gay, J. & Sánchez, L. E. Mitigating impacts on ecosystem services requires more than biodiversity offsets. Land Use Policy 105, 105393 (2021).

    Article  Google Scholar 

  38. Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).

    Article  Google Scholar 

  39. Good Practice Handbook: Cumulative Impact Assessment and Management, Guidance for the Private Sector in Emerging Markets (IFC, 2013).

  40. Gunn, J. H. & Noble, B. F. Integrating cumulative effects in regional strategic environmental assessment frameworks: lessons from practice. J. Environ. Assess. Policy Manage. 11, 267–290 (2009).

    Article  Google Scholar 

  41. Ferrante, L. & Fearnside, P. M. The Amazon’ s road to deforestation. Science 20, 20–22 (2020).

    Google Scholar 

  42. Runge, C. A., Tulloch, A. I. T., Gordon, A. & Rhodes, J. R. Quantifying the conservation gains from shared access to linear infrastructure. Conserv. Biol. 31, 1428–1438 (2017).

    Article  Google Scholar 

  43. Kiesecker, J. M., Copeland, H., Pocewicz, A. & McKenney, B. Development by design: blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 8, 261–266 (2010).

    Article  Google Scholar 

  44. Heiner, M. et al. Moving from reactive to proactive development planning to conserve Indigenous community and biodiversity values. Environ. Impact Assess. Rev. 74, 1–13 (2019).

    Article  Google Scholar 

  45. Pfaff, A., Robalino, J., Herrera, D. & Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE 10, 1–17 (2015).

    Article  Google Scholar 

  46. Almeida, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5 / TM and MODIS data. Acta Amazon. 46, 291–302 (2008).

    Article  Google Scholar 

  47. Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 094004 (2016).

    Article  Google Scholar 

  48. Boham-Carter, G. F. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).

  49. Soares-Filho, B., Rodrigues, H. & Follador, M. A hybrid analytical–heuristic method for calibrating land-use change models. Environ. Model. Softw. 43, 80–87 (2013).

    Article  Google Scholar 

  50. INPE. TerraClass (2021).

  51. INPE. Slope (2020).

  52. Ministério do Meio Ambiente (MMA). Conservation units (2022).

  53. Fundação Nacional do Índio (FUNAI). Indigenous lands (2021).

  54. Leite-Filho, A., Soares-filho, B. S., Davis, J. & Rodrigues, H. Dinamica EGO Guidebook (Centro de Sensoriamento Remoto, UFMG, 2020).

  55. Serviço Geológico do Brasil. Mineral deposits (2020).

  56. Soares-Filho, B. et al. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarém-Cuiabá corridor. Glob. Change Biol. 10, 745–764 (2004).

    Article  Google Scholar 

  57. Centro de Sensoriamento Remoto. Biodiversity (2021).

  58. Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

  59. Pardini, R., de Bueno, A. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).

  60. Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803 (2020).

    Article  CAS  Google Scholar 

  61. Cabral, A. I. R., Saito, C., Pereira, H. & Laques, A. E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).

    Article  Google Scholar 

  62. Colson, F., Bogaert, J. & Ceulemans, R. Fragmentation in the Legal Amazon, Brazil: can landscape metrics indicate agricultural policy differences? Ecol. Indic. 11, 1467–1471 (2011).

    Article  Google Scholar 

  63. Monmonier, M. S. Measures of pattern complexity for choroplethic maps. Am. Cartogr. 1, 159–169 (1974).

    Article  Google Scholar 

  64. Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).

    Article  Google Scholar 

  65. Soares-Filho, B. et al. Roads, (2016).

Download references


This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This research was supported by the São Paulo Research Foundation (grant 2018/12475-7). J.P.M. was funded by the National Council for Scientific and Technological Development (CNPQ, 309767/2021-0).

Author information

Authors and Affiliations



J.S.-G., L.J.S. and L.E.S. were involved in the conceptualization. J.S.-G. wrote the original draft, and J.P.M., L.J.S. and L.E.S. reviewed and discussed all results. J.S.-G. processed data and designed maps. L.J.S. supervised the modelling exercise, and J.P.M. supervised the fragmentation analysis.

Corresponding author

Correspondence to Juliana Siqueira-Gay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Tim Werner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–16.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira-Gay, J., Metzger, J.P., Sánchez, L.E. et al. Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon. Nat Sustain 5, 853–860 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing