Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries

Abstract

Rechargeable aqueous Zn–MnO2 technology combines one of the oldest battery chemistries with favourable sustainability characteristics, including safety, cost and environmental compatibility. However, the ambiguous charge storage mechanism presents a challenge to fulfil the great potential of this energy technology. Here we leverage on advanced electron microscopy, electrochemical analysis and theoretical calculations to look into the intercalation chemistry within the cathode material, or α-MnO2 more specifically. We show that Zn2+ insertion into the cathode is unlikely in the aqueous system; rather, the charge storage process is dominated by proton intercalation to form α-HxMnO2. We further reveal anisotropic lattice change as a result of entering protons proceeding from the surface into the bulk of α-MnO2, which accounts for the structural failure and capacity decay of the electrode upon cycling. Our work not only advances the fundamental understanding of rechargeable zinc batteries but also suggests the possibility to optimize proton intercalation kinetics for better-performing cell designs.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Structure analysis and battery performance of α-MnO2.
Fig. 2: STEM analysis of discharged α-MnO2 nanowires.
Fig. 3: Atomistic modelling of H+ (versus Zn2+) insertion.
Fig. 4: Morphological/structural analysis of the α-MnO2 electrode during long cycling conditions.

Data availability

All relevant data that support the findings of this study are presented in the article and Supplementary Information. Source data are available from the corresponding authors upon reasonable request.

References

  1. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  CAS  Google Scholar 

  2. Sun, W. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017).

    Article  CAS  Google Scholar 

  3. Blanc, L. E., Kundu, D. & Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020).

    Article  CAS  Google Scholar 

  4. Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article  Google Scholar 

  5. Wang, X. et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 15, 9244–9272 (2021).

    Article  Google Scholar 

  6. Wu, D. et al. Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution–deposition mechanism in aqueous Zn/α-MnO2 batteries. Energy Environ. Sci. 13, 4322–4333 (2020).

    Article  CAS  Google Scholar 

  7. Chao, D. et al. An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019).

    Article  CAS  Google Scholar 

  8. Mateos, M., Makivic, N., Kim, Y. S., Limoges, B. & Balland, V. Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv. Energy Mater. 10, 2000332 (2020).

    Article  CAS  Google Scholar 

  9. Zhao, Q. et al. Proton insertion promoted a polyfurfural/MnO2 nanocomposite cathode for a rechargeable aqueous Zn–MnO2 battery. ACS Appl. Mater. Interfaces 12, 36072–36081 (2020).

    Article  CAS  Google Scholar 

  10. Mathew, V. et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments. ACS Energy Lett. 5, 2376–2400 (2020).

    Article  CAS  Google Scholar 

  11. Jiao, Y. et al. Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes. J. Mater. Chem. A 8, 22075–22082 (2020).

    Article  CAS  Google Scholar 

  12. Zhu, X. et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano 15, 2971–2983 (2021).

    Article  CAS  Google Scholar 

  13. Yuan, Y. et al. Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 3, 471–484 (2019).

    Article  CAS  Google Scholar 

  14. Yuan, Y. et al. Dynamic study of (de) sodiation in alpha-MnO2 nanowires. Nano Energy 19, 382–390 (2016).

    Article  CAS  Google Scholar 

  15. Yuan, Y. et al. Revealing the atomic structures of exposed lateral surfaces for polymorphic manganese dioxide nanowires. Small Struct. 2, 2000091 (2021).

    Article  CAS  Google Scholar 

  16. Lindberg, S. et al. Charge storage mechanism of α-MnO2 in protic and aprotic ionic liquid electrolytes. J. Power Sources 460, 228111 (2020).

    Article  CAS  Google Scholar 

  17. Alfaruqi, M. H. et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320–327 (2015).

    Article  CAS  Google Scholar 

  18. Alfaruqi, M. H. et al. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 650, 64–68 (2016).

    Article  CAS  Google Scholar 

  19. Xu, D. et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim. Acta 133, 254–261 (2014).

    Article  CAS  Google Scholar 

  20. Wu, B. et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14, 1703850 (2018).

    Article  Google Scholar 

  21. Lee, B. et al. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015).

    Article  CAS  Google Scholar 

  22. Zhang, N. et al. Rechargeable aqueous zinc–manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017).

    Article  CAS  Google Scholar 

  23. Lee, B. et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).

    Article  CAS  Google Scholar 

  24. Yang, J. et al. Unravelling the mechanism of rechargeable aqueous Zn–MnO2 batteries: implementation of charging process by electrodeposition of MnO2. ChemSusChem 13, 4103 (2020).

    Article  CAS  Google Scholar 

  25. Wang, J. et al. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance. ACS Appl. Mater. Interfaces 12, 34949–34958 (2020).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 31, 2036–2047 (2019).

    Article  CAS  Google Scholar 

  27. Gao, X. et al. H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small 16, 1905842 (2020).

    Article  CAS  Google Scholar 

  28. Huang, Y. et al. Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nanomicro Lett. 11, 49 (2019).

    CAS  Google Scholar 

  29. Yuan, Y. et al. Deciphering the atomic patterns leading to MnO2 polymorphism. Chem 5, 1793–1805 (2019).

    Article  CAS  Google Scholar 

  30. Yuan, Y. et al. Asynchronous crystal cell expansion during lithiation of K+-stabilized α-MnO2. Nano Lett. 15, 2998–3007 (2015).

    Article  CAS  Google Scholar 

  31. Tan, H., Verbeeck, J., Abakumov, A. & Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012).

    Article  CAS  Google Scholar 

  32. Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278–281 (2011).

    Article  CAS  Google Scholar 

  33. de Graaf, S., Momand, J., Mitterbauer, C., Lazar, S. & Kooi, B. J. Resolving hydrogen atoms at metal–metal hydride interfaces. Sci. Adv. 6, eaay4312 (2020).

    Article  Google Scholar 

  34. Tompsett, D. A., Parker, S. C. & Islam, M. S. Rutile (β-) MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance. J. Am. Chem. Soc. 136, 1418–1426 (2014).

    Article  CAS  Google Scholar 

  35. Tompsett, D. A., Parker, S. C., Bruce, P. G. & Islam, M. S. Nanostructuring of β-MnO2: the important role of surface to bulk ion migration. Chem. Mater. 25, 536–541 (2013).

    Article  CAS  Google Scholar 

  36. Vasiliev, I., Magar, B. A., Duay, J., Lambert, T. N. & Chalamala, B. Ab initio studies of hydrogen ion insertion into β-, R-, and γ-MnO2 polymorphs and the implications for shallow-cycled rechargeable Zn/MnO2 batteries. J. Electrochem. Soc. 165, A3517 (2018).

    Article  CAS  Google Scholar 

  37. Balachandran, D., Morgan, D. & Ceder, G. First principles study of H-insertion in MnO2. J. Solid State Chem. 166, 91–103 (2002).

    Article  CAS  Google Scholar 

  38. Tompsett, D. A. & Islam, M. S. Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem. Mater. 25, 2515–2526 (2013).

    Article  CAS  Google Scholar 

  39. Yuan, Y. et al. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nat. Commun. 7, 13374 (2016).

    Article  CAS  Google Scholar 

  40. Sharpe, R. et al. Redox chemistry and the role of trapped molecular O2 in Li-rich disordered rocksalt oxyfluoride cathodes. J. Am. Chem. Soc. 142, 21799–21809 (2020).

    Article  CAS  Google Scholar 

  41. Naylor, A. J. et al. Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes. J. Mater. Chem. A 7, 25355–25368 (2019).

    Article  CAS  Google Scholar 

  42. Li, Y. et al. Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nat. Mater. 17, 915–922 (2018).

    Article  CAS  Google Scholar 

  43. Tapia-Ruiz, N. et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3−xMgxMn2/3O2 (0 ≤ x ≤ 0.2) cathodes from diffraction, electrochemical and ab initio studies. Energy Environ. Sci. 11, 1470–1479 (2018).

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  50. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57, 1505 (1998).

    Article  CAS  Google Scholar 

  51. Kondrashev, Y. D. & Zaslavskii, A. The structure of the modifications of manganese (IV) oxide. Izv. Akad. Nauk SSSR Ser. Fiz. 15, 179–186 (1951).

    CAS  Google Scholar 

  52. Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental work is primarily supported by the funds from the US National Science Foundation (NSF) under CBET-1805938 and Argonne National Laboratory. Additional supports were provided to Y.Y. by the Natural Science Foundation of China (grant no. 52002287). R.S.-Y., Y.Y., M.C., M.T.S. and W.Y. are thankful to NSF CBET-1805938. R.S. and M.S.I. thank the EPSRC (LiBatt programme grant EP/M0009521/1) and the Faraday Institution (CATMAT project FIRG016, FIRG035) for financial support, and the HEC Materials Chemistry Consortium (EP/R029431), the Isambard HPC (EP/P020224/1) and the Balena HPC service (Bath) for supercomputer facilities. R.S. and M.S.I. gratefully acknowledge useful discussions with P. Zarabadi-Poor (Oxford), L. Morgan (Bath), K. McColl (Bath), M. J. Clarke (Bath) and J. Dawson (Newcastle). Work at Argonne National Laboratory was supported by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne, LLC, under contract number DE-AC02-06CH11357. Use of the Advanced Photon Source (APS) {Beamline 9-BM} at Argonne National Laboratory, Office of Science user facility, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work made use of instruments in the Electron Microscopy Service (Research Resources Center, UIC). We acknowledge Quantitative Bio-element Imaging Center (QBIC) at Northwestern University (US) for assistance of ICP measurement. We acknowledge Thermo Fisher Scientific’s Shanghai Nanoport, particularly S. Liu, for their consultative help in atomic imaging of light atoms using electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. initiated the experimental design and wrote the manuscript with R.S., M.S.I, K.H., R.S.-Y. and J.L. Y.Y. and R.S.-Y. designed the microscopy experiments, which were carried out and analysed by Y.Y., K.H., M.T.S. and M.C. Y.Y., C.L., T.L., W.Y. and K.A. carried out electrochemical experiments and data analyses. H.J. and S.W. contributed to discussions and offered guidance to the electrochemical data analysis. R.S. and M.S.I. designed, carried out and analysed the DFT calculations. Y.Y. and T.L. carried out synchrotron X-ray experiments. All authors contributed to the results discussion and writing of the manuscript.

Corresponding authors

Correspondence to Kun He, Reza Shahbazian-Yassar, M. Saiful Islam or Jun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Dipan Kundu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Tables 1–4 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Sharpe, R., He, K. et al. Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries. Nat Sustain 5, 890–898 (2022). https://doi.org/10.1038/s41893-022-00919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00919-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing