Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands

Abstract

Tropical dry woodlands are rapidly being lost to agricultural expansion, but how deforestation dynamics play out in these woodlands remains poorly understood. We have developed an approach to detect and map high-level patterns of deforestation frontiers, that is, the expansion of woodland loss across continents in unprecedented spatio-temporal detail. Deforestation in tropical dry woodlands is pervasive, with over 71 Mha lost since 2000 and one-third of wooded areas located in deforestation frontiers. Over 24.3 Mha of deforestation frontiers fall into what we term ‘rampant frontiers’. These are characterized by drastic woodland loss and conditions favourable for capital-intensive agriculture, as seen in the South American Chaco and Southeast Asia. We have found many active and emerging frontiers (~59% of all frontiers), mostly in the understudied dry woodlands of Africa and Asia, where greater frontier monitoring is needed. Our approach enables consistent, repeatable frontier monitoring, and our global frontier typology fosters comparative research and context-specific policymaking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analytical framework to derive major deforestation frontiers in the world’s tropical dry woodlands.
Fig. 2: Severity types of deforestation frontiers in tropical dry woodlands.
Fig. 3: Spatio-temporal pattern types of deforestation frontiers in tropical dry woodlands.
Fig. 4: Development stage types of deforestation frontiers in tropical dry woodlands.
Fig. 5: Archetypes of deforestation frontiers in tropical dry woodlands.
Fig. 6: Characteristics of frontier archetypes.

Similar content being viewed by others

Data availability

All datasets used here are publicly available and are referenced. Data outputs from this study are publicly available on Zenodo at https://doi.org/10.5281/zenodo.6141799. The methodological steps are described in the Methods and Supplementary Information.

Code availability

The code used for the development of frontier metrics, typologies and archetypes in this study is permanently and publicly available on Zenodo at https://doi.org/10.5281/zenodo.6141799.

References

  1. IPBES The IPBES Assessment Report on Land Degradation and Restoration (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018).

  2. Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    Article  CAS  Google Scholar 

  3. The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO and UNEP, 2020).

  4. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Article  Google Scholar 

  5. Geist, H. J. & Lambin, E. F. What Drives Tropical Deforestation? LUCC Report Series 4 (LUCC International Project Office, 2001).

  6. Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M. & Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 12, 054009 (2017).

    Article  Google Scholar 

  7. Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).

    Article  Google Scholar 

  8. Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

    Article  Google Scholar 

  9. Verburg, P. H. et al. Land system science and sustainable development of the Earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).

    Article  Google Scholar 

  10. Václavík, T. et al. Investigating potential transferability of place-based research in land system science. Environ. Res. Lett. 11, 095002 (2016).

    Article  Google Scholar 

  11. Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).

    Article  Google Scholar 

  12. Schröder, J. M., Ávila Rodríguez, L. P. & Günter, S. Research trends: tropical dry forests: the neglected research agenda? For. Policy Econ. 122, 102333 (2021).

    Article  Google Scholar 

  13. Rodrigues, A. S. L. et al. Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324, 1435–1437 (2009).

    Article  CAS  Google Scholar 

  14. de Jong, E. B. P., Knippenberg, L. & Bakker, L. New frontiers: an enriched perspective on extraction frontiers in Indonesia. Crit. Asian Stud. 49, 330–348 (2017).

    Article  Google Scholar 

  15. Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).

    Article  Google Scholar 

  16. Pacheco, P. et al. Deforestation Fronts: Drivers and Responses in a Changing World (WWF, 2021).

  17. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  18. Oberlack, C. et al. Archetype analysis in sustainability research: meanings, motivations, and evidence-based policy making. Ecol. Soc. https://doi.org/10.5751/ES-10747-240226 (2019).

  19. Sietz, D. et al. Archetype analysis in sustainability research: methodological portfolio and analytical frontiers. Ecol. Soc. https://doi.org/10.5751/ES-11103-240334 (2019).

  20. Václavík, T., Lautenbach, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change 23, 1637–1647 (2013).

    Article  Google Scholar 

  21. Vallejos, M. et al. Social-ecological functional types: connecting people and ecosystems in the Argentine Chaco. Ecosystems 23, 471–484 (2020).

    Article  Google Scholar 

  22. Oberlack, C., Tejada, L., Messerli, P., Rist, S. & Giger, M. Sustainable livelihoods in the global land rush? Archetypes of livelihood vulnerability and sustainability potentials. Glob. Environ. Change 41, 153–171 (2016).

    Article  Google Scholar 

  23. Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).

    Article  Google Scholar 

  24. Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).

    Article  CAS  Google Scholar 

  25. Ribeiro, N. S., Katerere, Y., Chirwa, P. W. & Grundy, I. M. in Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands (eds Ribeiro, N. S. et al.) 1–8 (Springer, 2020).

  26. Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).

    Article  Google Scholar 

  27. Chidumayo, E. & Marunda, C. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 1–9 (Earthscan, 2010).

  28. Gasparri, N. I. & Grau, H. R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 258, 913–921 (2009).

    Article  Google Scholar 

  29. Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).

    Article  Google Scholar 

  30. Ingalls, M. L., Meyfroidt, P., To, P. X., Kenney-Lazar, M. & Epprecht, M. The transboundary displacement of deforestation under REDD+: problematic intersections between the trade of forest-risk commodities and land grabbing in the Mekong region. Glob. Environ. Change 50, 255–267 (2018).

    Article  Google Scholar 

  31. Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).

    Article  CAS  Google Scholar 

  32. Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).

    Article  Google Scholar 

  33. Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article  Google Scholar 

  34. Sunderland, T. et al. Global dry forests: a prologue. Int. For. Rev. 17, 1–9 (2015).

    Google Scholar 

  35. Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. https://doi.org/10.5751/es-02559-130216 (2008).

  36. le Polain de Waroux, Y. et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 108, 204–225 (2018).

    Google Scholar 

  37. Romero-Muñoz, A. et al. Fires scorching Bolivia’s Chiquitano forest. Science 366, 1082 (2019).

    Article  CAS  Google Scholar 

  38. Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Article  Google Scholar 

  39. Eigenbrod, F. et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3, 504–514 (2020).

    Article  Google Scholar 

  40. Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).

    Article  Google Scholar 

  41. Volante, J. N. & Seghezzo, L. Can’t see the forest for the trees: can declining deforestation trends in the Argentinian Chaco region be ascribed to efficient law enforcement? Ecol. Econ. 146, 408–413 (2018).

    Article  Google Scholar 

  42. Chirwa, P. W. & Adeyemi, O. in Zero Hunger: Encyclopedia of the UN Sustainable Development Goals (eds Leal Filho, W. et al.) 1–15 (Springer, 2019).

  43. Pacheco, P. Actor and frontier types in the Brazilian Amazon: assessing interactions and outcomes associated with frontier expansion. Geoforum 43, 864–874 (2012).

    Article  Google Scholar 

  44. García, A. K., Meyfroidt, P., Abeygunawardane, D. & Sitoe, A. Waves and legacies: the making of an investment frontier in Niassa, Mozambique. Ecol. Soc. 27, 40 (2022).

  45. Leal, I. R., Da Silva, J. M. C., Tabarelli, M. & Lacher, T. E.Jr Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol. 19, 701–706 (2005).

    Article  Google Scholar 

  46. Osabuohien, E. S. & Karakara, A. A. in The Palgrave Handbook of Agricultural and Rural Development in Africa (ed. Osabuohien, E. S.) 627–640 (Springer, 2020).

  47. Gautier, D., Garcia, C., Negi, S. & Wardell, D. A. The limits and failures of existing forest governance standards in semi-arid contexts. Int. For. Rev. 17, 114–126 (2015).

    Google Scholar 

  48. Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).

    Article  CAS  Google Scholar 

  49. Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    Article  CAS  Google Scholar 

  50. Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).

    Article  CAS  Google Scholar 

  51. Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. https://doi.org/10.1088/2515-7620/ac26ab (2021).

  52. Harris, N., Goldman, E. D. & Gibbes, S. Spatial Database of Planted Trees (SDPT Version 1.0) (World Resources Institute, accessed 21 November 2021).

  53. Timberlake, W. J., Chidumayo, E. & Sawadogo, L. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 11–41 (Earthscan, 2010).

  54. Portillo-Quintero, C. A. & Sánchez-Azofeifa, G. A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143, 144–155 (2010).

    Article  Google Scholar 

  55. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  Google Scholar 

  56. Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).

    Article  Google Scholar 

  57. Lock, J. M. in Neotropical Savannas and Seasonally Dry Forests (eds Pennington, R. T. & Ratter, J. A.) 449–467 (CRC Press, 2006).

  58. Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).

    Article  CAS  Google Scholar 

  59. Baldi, G., Veron, S. R. & Jobbagy, E. G. The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Glob. Change Biol. 19, 441–458 (2013).

    Article  Google Scholar 

  60. Lahsen, M., Bustamante, M. M. C. & Dalla-Nora, E. L. Undervaluing and overexploiting the Brazilian Cerrado at our peril. Environ. Sci. Policy Sustain. Dev. 58, 4–15 (2016).

    Article  Google Scholar 

  61. Sitoe, A., Chidumayo, E. & Alberto, M. in The Dry Forests and Woodlands of Africa (eds Chidumayo, E. N. & Gumbo, D.) 131–153 (Earthscan, 2010).

  62. Ozdogan, M. & Woodcock, C. E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 103, 203–217 (2006).

    Article  Google Scholar 

  63. Estes, L. et al. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses. Glob. Change Biol. 24, 322–337 (2018).

    Article  Google Scholar 

  64. Dlamini, W. M. Mapping forest and woodland loss in Swaziland: 1990–2015. Remote Sens. Appl. Soc. Environ. 5, 45–53 (2017).

    Google Scholar 

  65. Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).

    Article  Google Scholar 

  66. Walker, R. Mapping process to pattern in the landscape change of the Amazonian frontier. Ann. Assoc. Am. Geogr. 93, 376–398 (2003).

    Article  Google Scholar 

  67. Baumann, M. et al. Frontier metrics for a process-based understanding of deforestation dynamics. Preprint at EarthArXiv https://doi.org/10.31223/X55S7J (2022).

  68. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  Google Scholar 

  69. Lesiv, M. et al. Estimating the global distribution of field size using crowdsourcing. Glob. Change Biol. 25, 174–186 (2019).

    Article  Google Scholar 

  70. Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    Article  CAS  Google Scholar 

  71. Global Agro-Ecological Zones (GAEZ v3. 0) (IIASA and FAO, accessed 24 July 2020).

  72. Heinimann, A. et al. A global view of shifting cultivation: recent, current, and future extent. PLoS ONE 12, e0184479 (2017).

    Article  CAS  Google Scholar 

  73. Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

A.B. was supported by the Fundação para a Ciência e a Tecnologia (FCT), IP, through a PhD grant (SFRH/BD/143236/2019). A.B. and T.K. are grateful for financial support of this project through a start-up grant by Humboldt-University Berlin. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (projects 677140 MIDLAND to P.M. and 101001239 SYSTEMSHIFT to T.K.). This work contributes to the Global Land Programme (https://glp.earth).

Author information

Authors and Affiliations

Authors

Contributions

A.B., T.K., M.B. and P.M. conceived the research idea. A.B. and M.B. collected the data. A.B. led the design of the analytical framework, the data analysis and the writing. M.B., P.M. and T.K. contributed to the interpretation of results and the writing of the manuscript.

Corresponding author

Correspondence to Ana Buchadas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Mário Marcos do Espírito Santo, Ole Mertz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–3, Text 1 and 2, and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchadas, A., Baumann, M., Meyfroidt, P. et al. Uncovering major types of deforestation frontiers across the world’s tropical dry woodlands. Nat Sustain 5, 619–627 (2022). https://doi.org/10.1038/s41893-022-00886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00886-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene