Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast seawater desalination with covalent organic framework membranes

Abstract

The lack of access to clean water for billions of people represents a fundamental global sustainability challenge that must be addressed. Seawater desalination using membrane technologies provides a promising solution; however, the dominating desalination membranes often show low permeation flux and deficient fouling resistance. Here we achieve ultrafast desalination by taking advantage of covalent organic framework (COF) membranes where TaPa-SO3H nanosheets are linked by TpTTPA nanoribbons through electrostatic and ππ interactions to form an ordered and robust structure. The optimum COF membrane exhibits excellent rejection of NaCl (99.91%) and more importantly an ultrafast water flux of 267 kg m−2 h−1, which outperforms the state-of-the-art designs and is 4–10 times higher than conventional membranes. Furthermore, the desired fouling resistance underpins superior operational stability (108 h) and high salinity (7.5 wt%) tolerance, offering great potential in practical applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology of building blocks of COF membranes.
Fig. 2: Preparation of the COF membranes.
Fig. 3: Structures of the COF membranes.
Fig. 4: Desalination performance of the COF membranes.
Fig. 5: Ultrafast desalination mechanism of the COF membranes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and Supplementary Data 1 and 2 or available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  2. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    Article  CAS  Google Scholar 

  3. Patel, S. K. et al. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 13, 1694–1710 (2020).

    Article  CAS  Google Scholar 

  4. Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Article  Google Scholar 

  5. Skuse, C., Gallego-Schmid, A., Azapagic, A. & Gorgojo, P. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination 500, 114844 (2021).

    Article  CAS  Google Scholar 

  6. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    Article  CAS  Google Scholar 

  7. Brogioli, D., La Mantia, F. & Yip, N. Y. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 428, 29–39 (2018).

    Article  CAS  Google Scholar 

  8. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Article  Google Scholar 

  9. Castro-Munoz, R. Breakthroughs on tailoring pervaporation membranes for water desalination: a review. Water Res. 187, 116428 (2020).

    Article  CAS  Google Scholar 

  10. Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    Article  CAS  Google Scholar 

  11. Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

  12. Kaminski, W., Marszalek, J. & Tomczak, E. Water desalination by pervaporation—comparison of energy consumption. Desalination 433, 89–93 (2018).

    Article  CAS  Google Scholar 

  13. Xue, Y. L., Huang, J., Lau, C. H., Cao, B. & Li, P. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nat. Commun. 11, 1461 (2020).

    Article  CAS  Google Scholar 

  14. Bell, C.-M. Comparison of polyelectrolyte coated PVDF membranes in thermopervaporation with porous hydrophobic membranes in membrane distillation using plate-and-frame modules. Chem. Eng. Process. 104, 58–65 (2016).

    Article  CAS  Google Scholar 

  15. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  16. Wu, X. et al. Scalable Ti3C2Tx MXene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery. ACA Nano 14, 9125–9135 (2020).

    Article  CAS  Google Scholar 

  17. Wang, H. et al. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50, 5468–5516 (2021).

    Article  CAS  Google Scholar 

  18. Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).

    Article  CAS  Google Scholar 

  19. Wang, R., Wei, M. & Wang, Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J. Membr. Sci. 604, 118090 (2020).

    Article  CAS  Google Scholar 

  20. Xiao, A. et al. Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. J. Membr. Sci. 624, 119122 (2021).

    Article  CAS  Google Scholar 

  21. Xia, Z., Zhao, Y. & Darling, S. B. Covalent organic frameworks for water treatment. Adv. Mater. Interfaces 8, 2001507 (2021).

    Article  CAS  Google Scholar 

  22. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    Article  CAS  Google Scholar 

  23. Chandra, S. et al. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 28, 1489–1494 (2016).

    Article  CAS  Google Scholar 

  24. Peng, Y. et al. Synthesis of a sulfonated two-dimensional covalent organic framework as an efficient solid acid catalyst for biobased chemical conversion. ChemSusChem 8, 3208–3212 (2015).

    Article  CAS  Google Scholar 

  25. Wang, S. et al. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071–1089 (2020).

    Article  CAS  Google Scholar 

  26. Zhao, Q. et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 15, 407–412 (2016).

    Article  CAS  Google Scholar 

  27. Kaur, S., Weerasekare, G. M. & Stewart, R. J. Multiphase adhesive coacervates inspired by the sandcastle worm. ACS Appl. Mater. Interfaces 3, 941–944 (2011).

    Article  CAS  Google Scholar 

  28. Stewart, R. J., Wang, C. S., Song, I. T. & Jones, J. P. The role of coacervation and phase transitions in the sandcastle worm adhesive system. Adv. Colloid Interface Sci. 239, 88–96 (2017).

    Article  CAS  Google Scholar 

  29. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Article  CAS  Google Scholar 

  30. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  Google Scholar 

  31. You, X. et al. Fouling-resistant robust membranes via electrostatic complexation for water purification. Chem. Eng. J. 416, 129139 (2021).

    Article  CAS  Google Scholar 

  32. Austria, H. F. M. et al. Investigation of salt penetration mechanism in hydrolyzed polyacrylonitrile asymmetric membranes for pervaporation desalination. Desalination 463, 32–39 (2019).

    Article  CAS  Google Scholar 

  33. Yang, H. et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10, 2101 (2019).

    Article  CAS  Google Scholar 

  34. Fan, H. et al. Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).

    Article  CAS  Google Scholar 

  35. Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    Article  CAS  Google Scholar 

  36. Yang, L. et al. COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture. J. Mater. Chem. A 9, 12636–12643 (2021).

    Article  CAS  Google Scholar 

  37. Yang, L. et al. Amino-functionalized POSS nanocage intercalated graphene oxide membranes for efficient biogas upgrading. J. Membr. Sci. 596, 117733 (2020).

    Article  CAS  Google Scholar 

  38. Chen, W. et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat. Nanotechnol. 13, 345–350 (2018).

    Article  CAS  Google Scholar 

  39. Pan, F. et al. Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. J. Membr. Sci. 552, 1–12 (2018).

    Article  CAS  Google Scholar 

  40. Wang, M. et al. Constructing channel-mediated facilitated transport membranes by incorporating covalent organic framework nanosheets with tunable microenvironments. J. Mater. Chem. A 7, 9912–9923 (2019).

    Article  CAS  Google Scholar 

  41. Yang, G. et al. Functionalized carbon nanotube-mediated transport in membranes containing fixed-site carriers for fast pervaporation desalination. ACS Appl. Mater. Interfaces 12, 50918–50928 (2020).

    Article  CAS  Google Scholar 

  42. Xue, Y. L., Lau, C. H., Cao, B. & Li, P. Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. J. Membr. Sci. 575, 135–146 (2019).

    Article  CAS  Google Scholar 

  43. Liu, G. et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membr. Sci. 548, 548–558 (2018).

    Article  CAS  Google Scholar 

  44. Wang, Q., Li, N., Bolto, B., Hoang, M. & Xie, Z. Desalination by pervaporation: a review. Desalination 387, 46–60 (2016).

    Article  CAS  Google Scholar 

  45. Cao, L. et al. Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 32, 2005565 (2020).

    Article  CAS  Google Scholar 

  46. He, X. et al. De novo design of covalent organic framework membranes toward ultrafast anion transport. Adv. Mater. 32, 2001284 (2020).

    Article  CAS  Google Scholar 

  47. Kadantsev, E. S., Boyd, P. G., Daff, T. D. & Woo, T. K. Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption. J. Phys. Chem. Lett. 4, 3056–3061 (2013).

    Article  CAS  Google Scholar 

  48. Berandsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6296–6271 (1987).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from National Natural Science Foundation of China (grant nos. 22178251, 21878216, 91934302, 21838008 and 21878215), National Key Research and Development Programme of China (grant nos. 2021YFC2101200 and 2021YFB3802200) and Programme of Introducing Talents of Discipline to Universities (grant no. BP0618007).

Author information

Authors and Affiliations

Authors

Contributions

M.W., F.P. and Z.J. conceived the idea and designed the experiments. P.Z., X.L., Zhenjie Zhang and M.W. synthesized the materials and carried out most of the characterizations. J.Z., Zhiming Zhang, Y. Chen and H.W. helped with some of the characterizations. F.P. and Y. Cao contributed to the MD calculations. Y.L. contributed to the Langevin dynamics simulations. M.W., F.P. and Z.J. wrote the manuscript.

Corresponding authors

Correspondence to Fusheng Pan, Zhenjie Zhang or Zhongyi Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Seth Darling, Pei Li, Bo Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Scheme 1, Figs. 1–44 and references.

Supplementary Data 1

Data for Supplementary Figures.

Supplementary Data 2

Crystallographic data for TpTTPA.

Supplementary Tables

Supplementary Tables 1–6.

Source data

Source Data Fig. 3

Data for GIWAXS, N2 adsorption–desorption and FTIR.

Source Data Fig. 4

Data for desalination performance.

Source Data Fig. 5

Data for permeability and QCM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, P., Liang, X. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat Sustain 5, 518–526 (2022). https://doi.org/10.1038/s41893-022-00870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00870-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing