Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sensing as the key to battery lifetime and sustainability

Abstract

Recent economic and productivity gains of rechargeable batteries have cemented their dominance in energy-intensive societies. With demand soaring, enhancing battery performance through continuous monitoring is essential to limiting their environmental footprint. Although some benefits of sensing have been known for a century, the convergence of fibre optic techniques with new battery platforms is poised to change the industry as a wealth of chemical, thermal and mechanical data will transform the utilization strategies for new and used lithium-ion devices alike. This Review highlights recent advances and associated benefits with a focus on optical sensors that could improve the sustainability of batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensing overview.
Fig. 2: Acoustic sensing.
Fig. 3: Optical sensing relying on FBGs.
Fig. 4: Optical sensing based on evanescent waves.
Fig. 5: Fibre engineering.
Fig. 6: Projecting in the future.

Similar content being viewed by others

References

  1. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  Google Scholar 

  2. Grey, C. & Tarascon, J. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Article  Google Scholar 

  3. Brudermüller, M., Sobotka, B. & Waughray, D. A Vision for a Sustainable Battery Value Chain in 2030 (World Economic Forum, 2019).

  4. Battery pack prices cited below $100/kWh for the first time in 2020, while market average sits at $137/kWh. BloombergNEF (16 December 2020); https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/

  5. Fichtner, M. et al. Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. https://doi.org/10.1002/aenm.202102904 (2022).

  6. Proposal for a Regulation of the European Parliament and of the Council Concerning Batteries and Waste Batteries, Repealing Directive 2006/66/EC and Amending Regulation (EU) No 2019/1020 (European Commission, 2020).

  7. Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).

    Article  CAS  Google Scholar 

  8. Blanc, F., Leskes, M. & Grey, C. P. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc. Chem. Res. 46, 1952–1963 (2013).

    Article  CAS  Google Scholar 

  9. Ilott, A. J., Mohammadi, M., Schauerman, C. M., Ganter, M. J. & Jerschow, A. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging. Nat. Commun. 9, 1776 (2018).

    Article  Google Scholar 

  10. Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    Article  CAS  Google Scholar 

  11. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  CAS  Google Scholar 

  12. Li, W. et al. Peering into batteries: electrochemical insight through in situ and operando methods over multiple length scales. Joule 5, 77–88 (2021).

    Article  CAS  Google Scholar 

  13. Spitthoff, L., Shearing, P. R. & Burheim, O. S. Temperature, ageing and thermal management of lithium-ion batteries. Energies 14, 1248 (2021).

    Article  CAS  Google Scholar 

  14. Knobloch, A. et al. Fabrication of multimeasurand sensor for monitoring of a Li-ion battery. J. Electron. Packag. 140, 031002 (2018).

    Article  Google Scholar 

  15. Amietszajew, T. et al. Hybrid thermo-electrochemical in situ instrumentation for lithium-ion energy storage. Batter. Supercaps 2, 934–940 (2019).

    Article  CAS  Google Scholar 

  16. Martiny, N. et al. Development of an all Kapton-based thin-film thermocouple matrix for in situ temperature measurement in a lithium ion pouch cell. IEEE Sens. J. 14, 3377–3384 (2014).

    Article  CAS  Google Scholar 

  17. Li, S. et al. Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries. J. Power Sources 492, 229594 (2021).

    Article  CAS  Google Scholar 

  18. Bright, C. T. et al. Remarks on “On reversible lead batteries and their use for electric lighting”. J. Soc. Telegr. Eng. Electr. 16, 184–218 (1887).

    Google Scholar 

  19. Lanphier, R. C. The ampere-hour meter for electric vehicles. SAE Trans. 6, 371–393 (1911).

    Google Scholar 

  20. Mas, J. A. Battery charging system and transducer therefor. US patent 3,460,019 (1969).

  21. Keddam, M., Stoynov, Z. & Takenouti, H. Impedance measurement on Pb/H2SO4 batteries. J. Appl. Electrochem. 7, 539–544 (1977).

    Article  CAS  Google Scholar 

  22. Worrell, C. & Redfern, B. Acoustic emission studies of the breakdown of beta-alumina under conditions of sodium ion transport. J. Mater. Sci. 13, 1515–1520 (1978).

    Article  CAS  Google Scholar 

  23. Nagai, Y., Tomokuni, Y. & Matsui, T. Optical-type hydrometer for lead-acid batteries and its applications. In Proc. INTELEC ‘87 – The Ninth International Telecommunications Energy Conference 640–647 (IEEE, 1987); https://doi.org/10.1109/INTLEC.1987.4794631

  24. Garrard, W. N. C. & Charlesworth, J. M. Application of the quartz crystal microbalance to measurement of the concentration of electrolyte in lead/acid batteries. J. Power Sources 56, 19–23 (1995).

    Article  CAS  Google Scholar 

  25. Black, N. H. & Davis, H. N. Practical Physics: Fundamental Principles and Applications to Daily Life 79 (Macmillan, 1922).

  26. Cao-Paz, A. M., Rodríguez-Pardo, L., Fariña, J. & Marcos-Acevedo, J. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries. Sensors 12, 10604–10620 (2012).

    Article  CAS  Google Scholar 

  27. Dollé, M., Orsini, F., Gozdz, A. S. & Tarascon, J.-M. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries. J. Electrochem. Soc. 148, A851–A857 (2001).

    Article  Google Scholar 

  28. Smith, A. J., Burns, J. C., Trussler, S. & Dahn, J. R. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196 (2010).

    Article  CAS  Google Scholar 

  29. Dahn, H. M., Smith, A., Burns, J., Stevens, D. & Dahn, J. User-friendly differential voltage analysis freeware for the analysis of degradation mechanisms in Li-ion batteries. J. Electrochem. Soc. 159, A1405 (2012).

    Article  CAS  Google Scholar 

  30. Gireaud, L., Grugeon, S., Laruelle, S., Pilard, S. & Tarascon, J. M. Identification of Li battery electrolyte degradation products through direct synthesis and characterization of alkyl carbonate salts. J. Electrochem. Soc. 152, A850 (2005).

    Article  CAS  Google Scholar 

  31. Horsthemke, F., Winkler, V., Diehl, M., Winter, M. & Nowak, S. Concept for the analysis of the electrolyte composition within the cell manufacturing process: from sealing to sample preparation. Energy Technol. 8, 1801081 (2020).

    Article  CAS  Google Scholar 

  32. Day, R. et al. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging. J. Electrochem. Soc. 162, A2577 (2015).

    Article  CAS  Google Scholar 

  33. Aiken, C. et al. An apparatus for the study of in situ gas evolution in Li-ion pouch cells. J. Electrochem. Soc. 161, A1548 (2014).

    Article  CAS  Google Scholar 

  34. Ohzuku, T., Matoba, N. & Sawai, K. Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry. J. Power Sources 97, 73–77 (2001).

    Article  Google Scholar 

  35. Michael, H. et al. A dilatometric study of graphite electrodes during cycling with X-ray computed tomography. J. Electrochem. Soc. 168, 010507 (2021).

    Article  CAS  Google Scholar 

  36. Al-Obeidi, A., Kramer, D., Boles, S. T., Mönig, R. & Thompson, C. V. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation. Appl. Phys. Lett. 109, 071902 (2016).

    Article  Google Scholar 

  37. Louli, A., Ellis, L. & Dahn, J. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance. Joule 3, 745–761 (2019).

    Article  CAS  Google Scholar 

  38. Ohzuku, T., Tomura, H. & Sawai, K. Monitoring of particle fracture by acoustic emission during charge and discharge of Li/MnO2 cells. J. Electrochem. Soc. 144, 3496 (1997).

    Article  CAS  Google Scholar 

  39. Didier-Laurent, S., Idrissi, H. & Roué, L. In-situ study of the cracking of metal hydride electrodes by acoustic emission technique. J. Power Sources 179, 412–416 (2008).

    Article  CAS  Google Scholar 

  40. Mizutani, Y. et al. Practical Acoustic Emission Testing (Springer, 2006).

  41. Rhodes, K., Dudney, N., Lara-Curzio, E. & Daniel, C. Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission. J. Electrochem. Soc. 157, A1354 (2010).

    Article  CAS  Google Scholar 

  42. Choe, C.-Y., Jung, W.-S. & Byeon, J.-W. Damage evaluation in lithium cobalt oxide/carbon electrodes of secondary battery by acoustic emission monitoring. Mater. Trans. 56, 269–273 (2015).

    Article  CAS  Google Scholar 

  43. Schweidler, S., Bianchini, M., Hartmann, P., Brezesinski, T. & Janek, J. The sound of batteries: an operando acoustic emission study of the LiNiO2 cathode in Li-ion cells. Batter. Supercaps 3, 1021–1027 (2020).

    Article  Google Scholar 

  44. Sood, B., Osterman, M. & Pecht, M. Health monitoring of lithium-ion batteries. In Proc. 2013 IEEE Symposium on Product Compliance Engineering (ISPCE) (IEEE, 2013); https://doi.org/10.1109/ISPCE.2013.6664165

  45. Hsieh, A. et al. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health. Energy Environ. Sci. 8, 1569–1577 (2015).

    Article  CAS  Google Scholar 

  46. Robinson, J. B. et al. Spatially resolved ultrasound diagnostics of Li-ion battery electrodes. Phys. Chem. Chem. Phys. 21, 6354–6361 (2019).

    Article  CAS  Google Scholar 

  47. Robinson, J. B. et al. Identifying defects in Li-ion cells using ultrasound acoustic measurements. J. Electrochem. Soc. 167, 120530 (2020).

    Article  CAS  Google Scholar 

  48. Gold, L. et al. Probing lithium-ion batteries’ state-of-charge using ultrasonic transmission – concept and laboratory testing. J. Power Sources 343, 536–544 (2017).

    Article  CAS  Google Scholar 

  49. Davies, G. et al. State of charge and state of health estimation using electrochemical acoustic time of flight analysis. J. Electrochem. Soc. 164, A2746 (2017).

    Article  CAS  Google Scholar 

  50. Deng, Z. et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule 4, 2017–2029 (2020).

    Article  CAS  Google Scholar 

  51. Louli, A. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  CAS  Google Scholar 

  52. Udd, E. & Spillman Jr, W. B. (eds) Fiber Optic Sensors: An Introduction for Engineers and Scientists 2nd edn (Wiley, 2011).

  53. Kurashima, T., Horiguchi, T. & Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 15, 1038–1040 (1990).

    Article  CAS  Google Scholar 

  54. Hartog, A. & Payne, D. Remote measurement of temperature distribution using an optical fibre. In Proc. 8th European Conference on Optical Communication (ECOC-8) (ECOC, 1982).

  55. Dakin, J., Pratt, D., Bibby, G. & Ross, J. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 21, 569–570 (1985).

    Article  CAS  Google Scholar 

  56. Huang, J. et al. Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors. Nat. Energy 5, 674–683 (2020).

    Article  CAS  Google Scholar 

  57. David, N., Wild, P., Jensen, J., Navessin, T. & Djilali, N. Simultaneous in situ measurement of temperature and relative humidity in a PEMFC using optical fiber sensors. J. Electrochem. Soc. 157, B1173 (2010).

    Article  CAS  Google Scholar 

  58. Han, G. et al. A review on various optical fibre sensing methods for batteries. Renew. Sustain. Energy Rev. 150, 111514 (2021).

    Article  CAS  Google Scholar 

  59. Su, Y.-D., Preger, Y., Burroughs, H., Sun, C. & Ohodnicki, P. R. Fiber optic sensing technologies for battery management systems and energy storage applications. Sensors 21, 1397 (2021).

    Article  CAS  Google Scholar 

  60. Raghavan, A., Kiesel, P. & Saha, B. Monitoring and management for energy storage devices. US patent 9,203,122 (2015).

  61. Leitão, C., Novo, C., Yang, G., Tang, C. & Pinto, J. Fiber Bragg grating sensors novel applications. In Proc. Latin America Optics and Photonics Conference 2012 LS2C.1 (Optical Society of America, 2012); https://opg.optica.org/abstract.cfm?URI=LAOP-2012-LS2C.1

  62. Yang, G., Leitão, C., Li, Y., Pinto, J. & Jiang, X. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage. Measurement 46, 3166–3172 (2013).

    Article  Google Scholar 

  63. Nascimento, M., Paixão, T., Ferreira, M. S. & Pinto, J. L. Thermal mapping of a lithium polymer batteries pack with FBGs network. Batteries 4, 67 (2018).

    Article  CAS  Google Scholar 

  64. Huang, J., Albero Blanquer, L., Gervillie, C. & Tarascon, J.-M. Distributed fiber optic sensing to assess in-live temperature imaging inside batteries: Rayleigh and FBGs. J. Electrochem. Soc. 168, 060520 (2021).

    Article  CAS  Google Scholar 

  65. Fleming, J. et al. Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors. HardwareX 3, 100–109 (2018).

    Article  Google Scholar 

  66. Raghavan, A. et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance. J. Power Sources 341, 466–473 (2017).

    Article  CAS  Google Scholar 

  67. Ganguli, A. et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation. J. Power Sources 341, 474–482 (2017).

    Article  CAS  Google Scholar 

  68. Nascimento, M. et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power Sources 410, 1–9 (2019).

    Article  Google Scholar 

  69. Bae, C. J., Manandhar, A., Kiesel, P. & Raghavan, A. Monitoring the strain evolution of lithium‐ion battery electrodes using an optical fiber Bragg grating sensor. Energy Technol. 4, 851–855 (2016).

    Article  CAS  Google Scholar 

  70. Albero Blanquer, L. et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13, 1153 (2022).

    Article  CAS  Google Scholar 

  71. Downie, L. & Dahn, J. Determination of the voltage dependence of parasitic heat flow in lithium ion cells using isothermal microcalorimetry. J. Electrochem. Soc. 161, A1782–A1787 (2014).

    Article  Google Scholar 

  72. Desai, P. et al. Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na‐ion electrolyte formulation. Adv. Energy Mater. 11, 2101490 (2021).

    Article  CAS  Google Scholar 

  73. Wahl, M. S. et al. The importance of optical fibres for internal temperature sensing in lithium-ion batteries during operation. Energies 14, 3617 (2021).

    Article  CAS  Google Scholar 

  74. Ghannoum, A. et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy. ACS Appl. Mater. Interfaces 8, 18763–18769 (2016).

    Article  CAS  Google Scholar 

  75. Nedjalkov, A. et al. Refractive index measurement of lithium ion battery electrolyte with etched surface cladding waveguide Bragg gratings and cell electrode state monitoring by optical strain sensors. Batteries 5, 30 (2019).

    Article  CAS  Google Scholar 

  76. James, S. W. & Tatam, R. P. Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, R49 (2003).

    Article  CAS  Google Scholar 

  77. Albert, J., Shao, L. Y. & Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7, 83–108 (2013).

    Article  CAS  Google Scholar 

  78. Marrec, L. et al. In-situ optical fibre sensors for temperature and salinity monitoring. In Proc. Europe Oceans 2005 Vol. 2, 1276–1278 (IEEE, 2005); https://doi.org/10.1109/OCEANSE.2005.1513243

  79. Guo, T., Liu, F., Guan, B.-O. & Albert, J. Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 78, 19–33 (2016).

    Article  CAS  Google Scholar 

  80. Lao, J. et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light Sci. Appl. 7, 34 (2018).

    Article  Google Scholar 

  81. Huang, J. et al. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors. Energy Environ. Sci. 14, 6464–6475 (2021).

    Article  CAS  Google Scholar 

  82. Sharma, A. K., Jha, R. & Gupta, B. D. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7, 1118–1129 (2007).

    Article  Google Scholar 

  83. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings 1st edn, Vol. 111 (Springer, 1988).

  84. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  85. Willets, K. A. & Duyne, R. P. V. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  86. Larsson, E. M., Langhammer, C., Zorić, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091–1094 (2009).

    Article  CAS  Google Scholar 

  87. Nugroho, F. A. A. et al. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 18, 489–495 (2019).

    Article  CAS  Google Scholar 

  88. Newman, J. & Chapman, T. W. Restricted diffusion in binary solutions. AIChE J. 19, 343–348 (1973).

    Article  CAS  Google Scholar 

  89. Yamanaka, T. et al. Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction. J. Phys. Chem. C. 120, 2585–2591 (2016).

    Article  CAS  Google Scholar 

  90. Fujimoto, S., Uemura, S., Imanishi, N. & Hirai, S. Oxygen concentration measurement in the porous cathode of a lithium-air battery using a fine optical fiber sensor. Mech. Eng. Lett. 5, 19-00095 (2019).

    Article  Google Scholar 

  91. Yang, G. Structure and Physical Properties of Chalcogenide Glasses. PhD thesis, University of Rennes 1 (2012).

  92. Tarascon, J.-M., Gervillié, C., Boussard, C., Zhang, X.-H. & Adam, J.-L. Method for operando characterization of chemical species within a battery using infrared spectroscopy. Eur. patent EP21306068.4 (2021).

  93. Udd, E. High speed fiber grating sensors for structural monitoring. Proc. SPIE 9098, 909808 (2014).

  94. Ogawa, K. et al. Wireless, portable fiber Bragg grating interrogation system employing optical edge filter. Sensors 19, 3222 (2019).

    Article  CAS  Google Scholar 

  95. Mendoza, E., Kempen, C., Sun, S. & Esterkin, Y. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments. Proc. SPIE 9202, 92020L (2014).

  96. Sonnenfeld, C. et al. Microstructured optical fiber Bragg grating as an internal three-dimensional strain sensor for composite laminates. Smart Mater. Struct. 24, 055003 (2015).

    Article  Google Scholar 

  97. Cubillas, A. M. et al. Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42, 8629–8648 (2013).

    Article  CAS  Google Scholar 

  98. Miele, E. et al. Operando Raman analysis of electrolyte changes in Li-ion batteries with hollow-core optical fibre sensors. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-531818/v1 (2021).

  99. Bertucci, A. et al. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. Bioelectron. 63, 248–254 (2015).

    Article  CAS  Google Scholar 

  100. Vegge, T., Tarascon, J. M. & Edström, K. Toward better and smarter batteries by combining AI with multisensory and self‐healing approaches. Adv. Energy Mater. 11, 2100362 (2021).

    Article  CAS  Google Scholar 

  101. Wu, B., Widanage, W. D., Yang, S. & Liu, X. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI 1, 100016 (2020).

    Article  Google Scholar 

  102. Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation 2nd edn (Elsevier, 2017).

Download references

Acknowledgements

We are truly thankful to L. Albero Blanquer, C. Gervillié, J. Bonefacino, J. J. Lamb, A. Grimaud and C. Delacourt for their critical reading of the manuscript, as well as to L. Quétel for sharing all of his expertise on FBG sensors. Equally, our thanks extend to H.-Y. Tam and T. Guo for in-depth discussion on various aspects of optical sensing. We are also indebted to F. Liu for providing the TFBG spectra and fruitful discussions. We acknowledge BATTERY 2030+ funded by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 957213, and funding from the International Balzan Prize Foundation via the 2020 Balzan Prize to J.-M.T. Lastly, we would like to thank the Collège de France for making all of the 2020 lectures of J.-M.T. that relate to this Review available free of charge via: https://www.college-de-france.fr/site/jean-marie-tarascon/course-2020-2021.htm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Tarascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Tazdin Amietszajew and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Boles, S.T. & Tarascon, JM. Sensing as the key to battery lifetime and sustainability. Nat Sustain 5, 194–204 (2022). https://doi.org/10.1038/s41893-022-00859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00859-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing