Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Meeting global challenges with regenerative agriculture producing food and energy


The world currently faces a suite of urgent challenges: environmental degradation, diminished biodiversity, climate change and persistent poverty and associated injustices. All of these challenges can be addressed to a large extent through agriculture. A dichotomy expressed as ‘food versus fuel’ has misled thinking and hindered needed action towards building agricultural systems in ways that are regenerative, biodiverse, climate resilient, equitable and economically sustainable. Here we offer examples of agricultural systems that meet the urgent needs while also producing food and energy. We call for refocused conversation and united action towards rapidly deploying such systems across biophysical and socioeconomic settings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diverse, coupled, circular food and energy systems provide more value to society.


  1. Kline, K. L. et al. Reconciling food security and bioenergy: priorities for action. GCB Bioenergy 9, 557–576 (2017).

    Article  Google Scholar 

  2. Rosegrant, M. W. & Msangi, S. Consensus and contention in the food-versus-fuel debate. Annu. Rev. Environ. Resour. 39, 271–294 (2014).

    Article  Google Scholar 

  3. Tomei, J. & Helliwell, R. Food versus fuel? Going beyond biofuels. Land Use Policy 56, 320–326 (2016).

    Article  Google Scholar 

  4. Valli, L. et al. Greenhouse gas emissions of electricity and biomethane produced using the BiogasdonerightTM system: four case studies from Italy. Biofuel. Bioprod. Biorefin. 11, 847–860 (2017).

    Article  CAS  Google Scholar 

  5. Al Mamun, S., Nasrat, F. & Debi, M. R. Integrated farming system: prospects in Bangladesh. J. Environ. Sci. Nat. Resour. 4, 127–136 (2011).

    Google Scholar 

  6. Preston, T. R. Future strategies for livestock production in tropical third world countries. Ambio 19, 390–393 (1990).

    Google Scholar 

  7. Aui, A., Li, W. & Wright, M. M. Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Waste Manage. 89, 154–164 (2019).

    Article  CAS  Google Scholar 

  8. Soliman, N. F. Aquaculture in Egypt Under Changing Climate (Alexandria Research Center for Adaptation to Climate Change, 2017).

  9. Dale, B. E. et al. BiogasdonerightTM: an innovative new system is commercialized in Italy. Biofuel. Bioprod. Biorefin. 10, 341–345 (2016).

    Article  CAS  Google Scholar 

  10. Koppelmäki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).

    Article  Google Scholar 

  11. Ahmed, S. et al. Systematic review on effects of bioenergy from edible versus inedible feedstocks on food security. NPJ Sci. Food 5, 9 (2021).

    Article  Google Scholar 

  12. Arias, P. A. et al. in IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021);

  13. Executive Order on Tackling the Climate Crisis at Home and Abroad (The White House, 2021);

  14. Biofuture Platform: Kickstarting a Global, Advanced Bioeconomy (Division for Energy Progress, Ministry of Foreign Affairs, Brazil, 2016);

  15. Food and Agriculture Data (FAO, 2021);

  16. Climate and Earth’s Energy Budget (The Earth Observatory, 2009);

  17. Current World Energy Consumption (The World Counts, 2021);

  18. Dale, B. E. & Ong, R. G. Energy, wealth, and human development: why and how biomass pretreatment research must improve. Biotechnol. Prog. 28, 893–898 (2012).

    Article  CAS  Google Scholar 

  19. Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).

    Article  Google Scholar 

  20. Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Article  Google Scholar 

  21. Smil, V. Feeding the World: A Challenge for the Twenty-first Century (MIT Press, 2001).

  22. Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    Article  CAS  Google Scholar 

  23. Brown, P. W. & Schulte, L. A. Agricultural landscape change (1937–2002) in three townships in Iowa, USA. Landsc. Urban Plan. 10, 202–212 (2011).

    Article  Google Scholar 

  24. Asbjornsen, H. et al. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 29, 101–125 (2014).

    Article  Google Scholar 

  25. Cities and Circular Economy for Food (Ellen MacArthur Foundation, 2019);

  26. Zhu, T., Curtis, J. & Clancy, M. Promoting agricultural biogas and biomethane production: lessons from cross-country studies. Renew. Sustain. Energy Rev. 114, 109332 (2019).

    Article  Google Scholar 

  27. Basso, B., Jones, J. W., Antle, J., Martinez-Feria, R. A. & Verma, B. Enabling circularity in grain production systems with novel technologies and policy. Agric. Syst. 193, 103244 (2021).

    Article  Google Scholar 

  28. Corona, B., Shen, L., Reike, D., Carreón, J. R. & Worrell, E. Towards sustainable development through the circular economy—a review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 151, 104498 (2019).

    Article  Google Scholar 

  29. Jones, J., Verma, B., Basso, B., Mohtar, R. & Matlock, M. Transforming food and agriculture to circular systems: a perspective for 2050. Resour. Mag. 28, 7–9 (2021).

    Google Scholar 

  30. Souza, G. M. et al. The role of bioenergy in a climate-changing world. Environ. Dev. 23, 57–64 (2017).

    Article  Google Scholar 

  31. Gelfand, I. et al. Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the US with bioenergy from purpose-grown biomass with and without BECCS. Environ. Sci. Technol. 54, 2961–2974 (2020).

    Article  CAS  Google Scholar 

  32. Pawlak, K. & Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. Sustainability 12, 5488 (2020).

    Article  Google Scholar 

  33. Thurow, R. & Kilman, S. Enough: Why the World’s Poorest Starve in an Age of Plenty (PublicAffairs, 2009).

  34. Godfray, H., Beddington, J., Crute, I. & Haddad, L. (eds) in Food Security: The Challenge of Feeding 9 Billion People Vol. 327, 812–818 (2010).

  35. Allee, A., Lynd, L. R. & Vaze, V. Cross-national analysis of food security drivers: comparing results based on the Food Insecurity Experience Scale and Global Food Security Index. Food Secur. 13, 1245–1261 (2021).

    Article  Google Scholar 

  36. Nordhaus, T., Shaiyra, D. & Trembath, A. Energy for Human Development (2016).

  37. Lee, C.-C. Energy consumption and GDP in developing countries: a cointegrated panel analysis. Energy Econ. 27, 415–427 (2005).

    Article  Google Scholar 

  38. Aksoy, M. A. & Beghin, J. C. Global Agricultural Trade and Developing Countries (World Bank Publications, 2004).

  39. Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? Vol. 3 (Bloomsbury, 2016).

  40. Naylor, R. & Falcon, W. Food security in an era of economic volatility. Popul. Dev. Rev. 36, 693–723 (2010).

    Article  Google Scholar 

  41. der Ploeg, J. D. et al. The economic potential of agroecology: empirical evidence from Europe. J. Rural Stud. 71, 46–61 (2019).

    Article  Google Scholar 

  42. Shattuck, A., Schiavoni, C. M. & VanGelder, Z. Translating the politics of food sovereignty: digging into contradictions, uncovering new dimensions. Globalizations 12, 421–433 (2015).

    Article  Google Scholar 

  43. The State of Food and Agriculture: Social Protection and Agriculture—Breaking the Cycle of Rural Poverty (FAO, 2015);

  44. Fairbairn, M. et al. Introduction: new directions in agrarian political economy. J. Peasant Stud. 41, 653–666 (2014).

    Article  Google Scholar 

  45. Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).

    Article  Google Scholar 

  46. Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 7, 1143–1148 (2020).

    Article  Google Scholar 

  47. Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. S. & Benfey, P. N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row crop production. Proc. Natl Acad. Sci. USA 118, e2022666118 (2021).

    Article  CAS  Google Scholar 

  48. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  CAS  Google Scholar 

  49. Brandes, E. et al. Targeted subfield switchgrass integration could improve the farm economy, water quality, and bioenergy feedstock production. GCB Bioenergy 10, 199–212 (2018).

    Article  CAS  Google Scholar 

  50. Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 5774 (2019).

    Article  Google Scholar 

  51. Schulte, L. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    Article  CAS  Google Scholar 

  52. Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    Article  Google Scholar 

  53. Horton, P., Long, S. P., Smith, P., Banwart, S. A. & Beerling, D. J. Technologies to deliver food and climate security through agriculture. Nat. Plants 7, 250–255 (2021).

    Article  CAS  Google Scholar 

  54. Martinez-Feria, R. & Basso, B. Predicting soil carbon changes in switchgrass grown on marginal lands under climate change and adaptation strategies. GCB Bioenergy 12, 742–755 (2020).

    Article  CAS  Google Scholar 

  55. Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, (2018).

  56. Möller, K. & Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12, 242–257 (2012).

    Article  Google Scholar 

  57. Holly, M. A., Larson, R. A., Powell, J. M., Ruark, M. D. & Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 239, 410–419 (2017).

    Article  CAS  Google Scholar 

  58. Domingo, N. G. G. et al. Air quality-related health damages of food. Proc. Natl Acad. Sci. USA 118, (2021).

  59. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (NASEM, 2019);

  60. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions (UNEP, 2021).

  61. Liebman, M. & Schulte, L. A. Enhancing agroecosystem performance and resilience through increased diversification of landscapes and cropping systems. Elementa 3, 41 (2015).

    Google Scholar 

  62. Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).

    Article  Google Scholar 

  63. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  64. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  65. De Schutter, O., Mattei, U., Vivero-Pol, J. L. & Ferrando, T. in Routledge Handbook of Food as a Commons (eds Vivero-Pol, J. L. et al.) Ch. 24, 373–395 (Taylor & Francis, 2018).

Download references


L.A.S., M.L., T.L.R., R.C.B. and J.G.A. were supported by USDA-NIFA (2020-68012-31824). L.A.S. was further supported by the McIntire-Stennis Program (IOW5534). B.B. and B.E.D. were supported by DOE (DE-SC0018409; DE-FC02-07ER64494) and USDA-NIFA (2015-68007-23133; 2018-67003-27406). G.M.S. was supported by FAPESP BIOEN Program grant Proc. 2018/16098-3. N.H. and B.B were supported by NSF (DEB-1832042).

Author information

Authors and Affiliations



L.A.S. and B.E.D. conceptualized and wrote the original draft. All authors contributed to writing and editing subsequent drafts.

Corresponding author

Correspondence to Lisa A. Schulte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Sustainability thanks Lee Lynd, Frank Rosillo-Calle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulte, L.A., Dale, B.E., Bozzetto, S. et al. Meeting global challenges with regenerative agriculture producing food and energy. Nat Sustain 5, 384–388 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing