Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12


Sustainable development depends on decoupling economic growth from resource use. The material footprint indicator accounts for environmental pressure related to a country’s final demand. It measures material use across global supply-chain networks linking production and consumption. For this reason, it has been used as an indicator for two Sustainable Development Goals: 8.4 ‘resource efficiency improvements’ and 12.2 ‘sustainable management of natural resources’. Currently, no reporting facility exists that provides global, detailed and timely information on countries’ material footprints. We present a new collaborative research platform, based on multiregional input–output analysis, that enables countries to regularly produce, update and report detailed global material footprint accounts and monitor progress towards Sustainable Development Goals 8.4 and 12.2. We show that the global material footprint has quadrupled since 1970, driven mainly by emerging economies in the Asia-Pacific region, but with an indication of plateauing since 2014. Capital investments increasingly dominate over household consumption as the main driver. At current trends, absolute decoupling is unlikely to occur over the next few decades. The new collaborative research platform allows to elevate the material footprint to Tier I status in the SDG indicator framework and paves the way to broaden application of the platform to other environmental footprint indicators.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of the world’s MF between 1970 and 2019.
Fig. 2: Material exporters and importers.
Fig. 3: Per capita MF and material intensity as a function of per capita GDP for the four aggregate material types.

Data availability

All data have been deposited at Material footprint data are freely available. Multiregion input–output data are available on request only because of the large file sizes.


  1. Sustainable Development Goals: 17 Goals to Transform our World (United Nations, 2015).

  2. Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    Article  CAS  Google Scholar 

  3. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article  CAS  Google Scholar 

  4. Steininger, K. W., Lininger, C., Meyer, L. H., Muñoz, P. & Schinko, T. Multiple carbon accounting to support just and effective climate policies. Nat. Clim. Change 6, 35–41 (2016).

    Article  Google Scholar 

  5. Afionis, S., Sakai, M., Scott, K., Barrett, J. & Gouldson, A. Consumption‐based carbon accounting: does it have a future? Wiley Interdiscip. Rev. Clim. Change 8, e438 (2017).

    Article  Google Scholar 

  6. IAEG-SDGs—Tier Classification for Global SDG Indicators (United Nations, 2019).

  7. Tier Classification for Global SDG Indicators (United Nations, 2021).

  8. Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Article  Google Scholar 

  9. Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    Article  CAS  Google Scholar 

  10. Handbook on Supply, Use and Input–Output Tables with Extensions and Applications (UNSD, 2018).

  11. Giljum, S., Bruckner, M. & Martinez, A. Material footprint assessment in a global input–output framework. J. Ind. Ecol. 19, 792–804 (2015).

    Article  Google Scholar 

  12. Wu, R., Geng, Y. & Liu, W. Trends of natural resource footprints in the BRIC (Brazil, Russia, India and China) countries. J. Clean. Prod. 142, 775–782 (2017).

    Article  Google Scholar 

  13. Pothen, F. A structural decomposition of global raw material consumption. Ecol. Econ. 141, 154–165 (2017).

    Article  Google Scholar 

  14. Giljum, S. et al. Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. J. Econ. Struct. 5, 17 (2016).

    Article  Google Scholar 

  15. Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).

    Article  Google Scholar 

  16. Steinmann, Z. J. N. et al. Headline environmental indicators revisited with the global multi‐regional input–output database EXIOBASE. J. Ind. Ecol. 22, 565–573 (2018).

    Article  Google Scholar 

  17. Bjelle, E. L. et al. Adding country resolution to EXIOBASE: impacts on land use embodied in trade. J. Econ. Struct. 9, 14 (2020).

    Article  Google Scholar 

  18. Lutter, S., Giljum, S. & Bruckner, M. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127, 1–10 (2016).

    Article  Google Scholar 

  19. Eisenmenger, N. et al. Consumption-based material flow indicators—comparing six ways of calculating the Austrian raw material consumption providing six results. Ecol. Econ. 128, 177–186 (2016).

    Article  Google Scholar 

  20. Bringezu, S. in Managing Water, Soil and Waste Resources to Achieve Sustainable Development Goals: Monitoring and Implementation of Integrated Resources Management (eds Hülsmann, S. & Ardakanian, R.) 11–34 (Springer, 2018).

  21. Giljum, S. et al. The impacts of data deviations between MRIO models on material footprints: a comparison of EXIOBASE, Eora, and ICIO. J. Ind. Ecol. 23, 946–958 (2019).

    Article  Google Scholar 

  22. Teixidó-Figueras, J. et al. International inequality of environmental pressures: decomposition and comparative analysis. Ecol. Indic. 62, 163–173 (2016).

    Article  Google Scholar 

  23. Schaffartzik, A., Duro, J. A. & Krausmann, F. Global appropriation of resources causes high international material inequality—growth is not the solution. Ecol. Econ. 163, 9–19 (2019).

    Article  Google Scholar 

  24. Södersten, C.-J., Wood, R. & Wiedmann, T. The capital load of global material footprints. Resour. Conserv. Recycl. 158, 104811 (2020).

    Article  Google Scholar 

  25. Berrill, P., Miller, T. R., Kondo, Y. & Hertwich, E. G. Capital in the American carbon, energy, and material footprint. J. Ind. Ecol. 24, 589–600 (2020).

    Article  Google Scholar 

  26. Jin, Y., Wang, H., Fry, J., Wang, Y. & Lenzen, M. Material footprints of Chinese megacities. Resour. Conserv. Recycl. 174, 105758 (2021).

    Article  Google Scholar 

  27. Ye, Q. et al. Linking the environmental pressures of China’s capital development to global final consumption of the past decades and into the future. J. Environ. Sci. Technol. 55, 6421–6429 (2021).

    Article  CAS  Google Scholar 

  28. Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).

    Article  Google Scholar 

  29. Fix, B. Dematerialization through services: evaluating the evidence. BioPhys. Econ. Resour. Qual. 4, 6 (2019).

    Article  Google Scholar 

  30. Capellán-Pérez, I., de Castro, C. & Miguel González, L. J. Dynamic energy return on energy investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 26, 100399 (2019).

    Article  Google Scholar 

  31. Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    Article  Google Scholar 

  32. Piñero, P., Heikkinen, M., Mäenpää, I. & Pongrácz, E. Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland. Ecol. Econ. 119, 217–229 (2015).

  33. de Koning, A. et al. Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecol. Econ. 116, 289–299 (2015).

  34. Kovanda, J., Weinzettel, J. & Schoer, K. What makes the difference in raw material equivalents calculation through environmentally extended input–output analysis? Ecol. Econ. 149, 80–87 (2018).

    Article  Google Scholar 

  35. Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: implications for resource efficiency. J. Ind. Ecol. 22, 553–564 (2018).

    Article  Google Scholar 

  36. Cibulka, S. & Giljum, S. Towards a comprehensive framework of the relationships between resource footprints, quality of life, and economic development. Sustainability (2020).

  37. Zheng, X., Wang, R., Wood, R., Wang, C. & Hertwich, E. G. High sensitivity of metal footprint to national GDP in part explained by capital formation. Nat. Geosci. 11, 269–273 (2018).

    Article  CAS  Google Scholar 

  38. Links Between Business Accounting and National Accounting (UNSD, 2000).

  39. Bringezu, S. et al. Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8, 778 (2016).

    Article  Google Scholar 

  40. European Parliament Resolution of 10 February 2021 on the New Circular Economy Action Plan 2020/2077(INI) (European Parliament, 2021).

  41. Ekvall, T., Hirschnitz-Garbers, M., Eboli, F. & Śniegocki, A. A systemic and systematic approach to the development of a policy mix for material resource efficiency. Sustainability 8, 373 (2016).

    Article  Google Scholar 

  42. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. J. Environ. Res. Lett. 15, 093001 (2020).

    Article  CAS  Google Scholar 

  43. Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2, 361–369 (2017).

    Article  Google Scholar 

  44. Bolea, L., Duarte, R. & Sanchez-Choliz, J. Exploring carbon emissions and international inequality in a globalized world: a multiregional-multisectoral perspective. Resour. Conserv. Recycl. 152, 104516 (2020).

    Article  Google Scholar 

  45. Wang, H. & Zhou, P. Assessing global CO2 emission inequality from consumption perspective: an index decomposition analysis. J. Ecol. Econ. 154, 257–271 (2018).

    Article  Google Scholar 

  46. Leontief, W. Input–Output Economics (Oxford Univ. Press, 1966).

  47. Leontief, W. in Studies in the Structure of the American Economy (eds Leontief, W. et al.) 93–115 (Oxford Univ. Press, 1953).

  48. Leontief, W. W. & Strout, A. A. in Structural Interdependence and Economic Development (ed. Barna, T.) 119–149 (Macmillan, 1963).

  49. Isard, W. Interregional and regional input–output analysis, a model of a space economy. Rev. Econ. Stat. 33, 318–328 (1951).

    Article  Google Scholar 

  50. Leontief, W. Structure of the world economy: outline of a simple input–output formulation. Am. Econ. Rev. 64, 823–834 (1974).

    Google Scholar 

  51. Tukker, A. & Dietzenbacher, E. Global multiregional input–output frameworks: an introduction and outlook. Econ. Syst. Res. 25, 1–19 (2013).

    Article  Google Scholar 

  52. Murray, J. & Lenzen, M. The Sustainability Practitioner’s Guide to Multi-Regional Input–Output Analysis (Common Ground, 2013).

  53. Kanemoto, K. & Murray, J. in The Sustainability Practitioner’s Guide to Input-Output Analysis (eds Murray, J. & Wood, R.) 167–178 (Common Ground, 2010).

  54. Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    Article  CAS  Google Scholar 

  55. Leontief, W. & Ford, D. Environmental repercussions and the economic structure: an input–output approach. Rev. Econ. Stat. 52, 262–271 (1970).

    Article  Google Scholar 

  56. Isard, W. et al. On the linkage of socio-economic and ecologic systems. Pap. Reg. Sci. Assoc. 21, 79–99 (1967).

    Google Scholar 

  57. SDG Indicators: Metadata Repository (UNSD, 2018);

  58. Material Footprint, Material Footprint per Capita, and Material Footprint per GDP Indicator 8.4.1 (UNSD, 2018);

  59. Material Footprint, Material Footprint per Capita, and Material Footprint per GDP Indicator 12.2.1 (UNSD, 2018);

  60. System of Environmental-Economic Accounting 2012: Applications and Extensions (United Nations, 2017);

  61. System of Environmental-Economic Accounting 2012: Applications and Extensions; 85–87 (United Nations, 2017);

  62. System of Environmental-Economic Accounting 2012: Applications and Extensions; 45–59 (United Nations, 2017);

  63. Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Article  Google Scholar 

  64. Global Material Flows Database Version 2021 (UN IRP, 2021).

  65. Geschke, A. & Hadjikakou, M. Virtual laboratories and MRIO analysis—an introduction. Econ. Syst. Res. 29, 143–157 (2017).

    Article  Google Scholar 

  66. Lenzen, M. et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).

    Article  Google Scholar 

  67. Lenzen, M. et al. New multi-regional input–output databases for Australia—enabling timely and flexible regional analysis. Econ. Syst. Res. 29, 275–295 (2017).

    Article  Google Scholar 

  68. Wiedmann, T. An input–output virtual laboratory in practice—survey of uptake, usage and applications of the first operational IELab. Econ. Syst. Res. 29, 296–312 (2017).

    Article  Google Scholar 

  69. Global Material Flows and Resource Productivity: Assessment Report for the UNEP International Resource Panel (UNEP, 2016).

  70. Technical Annex for Global Material Flows Database (UN IRP, 2018);

  71. Inomata, S. & Owen, A. Comparative evaluation of MRIO databases. Econ. Syst. Res. 26, 239–244 (2014).

    Article  Google Scholar 

  72. Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).

    Article  Google Scholar 

  73. Lenzen, M. et al. The carbon footprint of global tourism. Nat. Clim. Change 8, 522–528 (2018).

    Article  Google Scholar 

Download references


This work was financially supported by the Australian Research Council (ARC) through its projects DP0985522, DP130101293, DP190102277, LE160100066 and DP200102585 (M. Lenzen, A.G., J.F. and A.M.), as well as the National eResearch Collaboration Tools and Resources project (NeCTAR) through its Industrial Ecology Virtual Laboratory infrastructure VL 201 (M. Lenzen, A.G., J.F., A.M. and T.W.), by the United Nations Environment Programme International Resource Panel (IRP) work stream on metrics, data and indicators (M. Lenzen, A.G., J.W. and H.S.), by the United Nations Environment Programme Life Cycle Initiative that—together with the One Planet Network and the UN-IRP—commissioned the development of the online tool SCP-HAT (Agreement ref. DTIE17-SC052, DTIE19-SC042, DTIE20-SC042) (M. Lenzen, A.G., S.G., P.P., S.L., M.S. and H.S.) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725525) (S.G. and S.L.) . We thank S. Juraszek for expertly managing the Global MRIO Lab’s advanced computation requirements, C. Jarabak for help with collecting data and K. Hosking for editorial services. The views expressed in this article are those of the authors and do not necessarily reflect those of the various affiliated organisations.

Author information

Authors and Affiliations



H.S. and M. Lenzen designed the study; M. Lenzen, A.G., J.W., J.F. and M. Li performed the analysis; S.L., S.G. and P.P. reviewed the analysis; M. Lenzen, A.M. and H.S. wrote the manuscript; J.P., I.T., L.M.C., M.V.V., M.S., K.N. and T.W. reviewed the manuscript and contributed to the manuscript.

Corresponding author

Correspondence to Heinz Schandl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information 1–9, Figs. 1–23, Tables 1–7 and References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenzen, M., Geschke, A., West, J. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat Sustain 5, 157–166 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing