Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries

Subjects

Abstract

While lithium-ion batteries still dominate energy storage applications, aqueous potassium-ion batteries have emerged as a complementary technology due to their combined advantages in cost and safety. Realizing their full potential, however, is not without challenges. One is that among the limited choices of cathode materials, the more sustainable Prussian blue analogues suffer from fast capacity fading when manganese is present. Here we report a potassium manganese hexacyanoferrate K1.82Mn[Fe(CN)6]0.96·0.47H2O cathode featuring an in situ cation engineered surface where iron is substituted for manganese. With this engineered surface, the cathode design exhibits a discharge capacity of 160 mAh g−1 and 120 mAh g−1 at 300 mA g−1 and 2,500 mA g−1, respectively, and sustains 130,000 cycles (more than 500 days) with negligible capacity loss. Pairing the current cathode with a 3,4,9,10-perylenetetracarboxylic diimide anode yields a full potassium-ion cell that delivers an energy density as high as 92 Wh kg−1 and retains 82.5% of the initial capacity after 6,500 cycles at 1,500 mA g−1. The unprecedented electrochemical performance could be attributed to the suppressed manganese dissolution as a result of the shielding surface layer. This work may open an avenue for the rational design of high-performance cathode materials with redox-active manganese for rechargeable batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ substitution of Mn with Fe in KMnF.
Fig. 2: The K-storage performance of the KMnF electrode in the modified electrolyte.
Fig. 3: Investigation of the reaction mechanism and in situ Fe substitution.
Fig. 4: Elemental content across the cross-sectional areas of the initial and modified electrodes.
Fig. 5: First-principle calculations and Fe/Mn element content.
Fig. 6: The electrochemical performance of the KMnF//modified electrolyte//PTCDI full battery.

Similar content being viewed by others

Data availability

The data that support the plots depicted in this manuscript and other findings of this study are available upon request from the corresponding author.

References

  1. Zhang, W. C., Liu, Y. & Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019).

    Article  CAS  Google Scholar 

  2. Yu, M. et al. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137, 8332–8335 (2015).

    Article  CAS  Google Scholar 

  3. Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    Article  CAS  Google Scholar 

  4. Hosaka, T., Kubota, K., Hameed, A. S. & Komaba, S. Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020).

    Article  CAS  Google Scholar 

  5. Xiao, N., McCulloch, W. D. & Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat. Commun. 9, 3645 (2018).

    Article  Google Scholar 

  7. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article  CAS  Google Scholar 

  8. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  9. Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    Article  CAS  Google Scholar 

  10. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  CAS  Google Scholar 

  11. Lei, Y. et al. Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. Energy Storage Mater. 24, 319–328 (2020).

    Article  Google Scholar 

  12. Su, D., McDonagh, A., Qiao, S. & Wang, G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017).

    Article  Google Scholar 

  13. Zhu, K., Li, Z., Jin, T. & Jiao, L. Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries. J. Mater. Chem. A 8, 21103–21109 (2020).

    Article  CAS  Google Scholar 

  14. Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).

    Article  CAS  Google Scholar 

  15. Jiang, L. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019).

    Article  CAS  Google Scholar 

  16. Zhang, W., Pang, W. K., Sencadas, V. & Guo, Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2, 1534–1547 (2018).

    Article  CAS  Google Scholar 

  17. Eftekhari, A., Jian, Z. & Ji, X. Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404–4419 (2017).

    Article  CAS  Google Scholar 

  18. Zhou, A. et al. Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 (2020).

    Article  Google Scholar 

  19. Zhang, Q. et al. Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energy Rev. 1, 625–658 (2018).

    Article  CAS  Google Scholar 

  20. Bie, X. et al. A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J. Mater. Chem. A 5, 4325–4330 (2017).

    Article  CAS  Google Scholar 

  21. Xue, L. et al. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139, 2164–2167 (2017).

    Article  CAS  Google Scholar 

  22. Zhan, C., Qiu, X., Lu, J. & Amine, K. Tuning the Mn deposition on the anode to improve the cycle performance of the Mn-based lithium ion battery. Adv. Mater. Interfaces 3, 1500856 (2016).

    Article  Google Scholar 

  23. Liu, T. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

    Article  Google Scholar 

  24. Zhan, C., Wu, T., Lu, J. & Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ. Sci. 11, 243–257 (2018).

    Article  CAS  Google Scholar 

  25. Xia, H. et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 9, 5100 (2018).

    Article  Google Scholar 

  26. Zuo, C. et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Energy Mater. 10, 2000363 (2020).

    Article  CAS  Google Scholar 

  27. He, G. & Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017).

    Article  CAS  Google Scholar 

  28. Ren, W. H., Chen, X. J. & Zhao, C. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 (2018).

    Article  Google Scholar 

  29. Ling, T. et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, eaau6261 (2018).

    Article  CAS  Google Scholar 

  30. Zhu, X. et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain 4, 392–401 (2020).

    Article  Google Scholar 

  31. Schkeryantz, L. A. et al. Designing potassium battery salts through a solvent-in-anion concept for concentrated electrolytes and mimicking solvation structures. Chem. Mater. 32, 10423–10434 (2020).

    Article  CAS  Google Scholar 

  32. Shang, Y. et al. Unconventional Mn vacancies in Mn–Fe Prussian blue analogs: suppressing Jahn–Teller distortion for ultrastable sodium storage. Chem 6, 1804–1818 (2020).

    Article  CAS  Google Scholar 

  33. Xia, M. et al. Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem. Eng. J. 394, 124923 (2020).

    Article  CAS  Google Scholar 

  34. Wang, M., Wang, H., Zhang, H. & Li, X. Aqueous K-ion battery incorporating environment-friendly organic compound and Berlin green. J. Energy Chem. 48, 14–20 (2020).

    Article  Google Scholar 

  35. Lu, K. et al. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Nanoscale 10, 20754–20760 (2018).

    Article  CAS  Google Scholar 

  36. Song, J. et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015).

    Article  CAS  Google Scholar 

  37. Li, W. et al. Stress distortion restraint to boost the sodium ion storage performance of a novel binary hexacyanoferrate. Adv. Energy Mater. 10, 1903006 (2019).

    Article  Google Scholar 

  38. Liu, S. et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 33, 2006313 (2021).

    Article  CAS  Google Scholar 

  39. Nakamoto, K. et al. Over 2 V aqueous sodium‐ion battery with Prussian blue‐type electrodes. Small Methods 3, 1800220 (2018).

    Article  Google Scholar 

  40. Hou, Z. et al. An aqueous rechargeable sodium ion battery based on a NaMnO2//NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3, 1400–1404 (2015).

    Article  CAS  Google Scholar 

  41. Wu, X. et al. Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015).

    Article  CAS  Google Scholar 

  42. Gao, H. & Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. Engl. 55, 12768–12772 (2016).

    Article  CAS  Google Scholar 

  43. Suo, L. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe green and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    Article  Google Scholar 

  44. Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    Article  Google Scholar 

  45. Fernández-Ropero, A. J. et al. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources 291, 40–45 (2015).

    Article  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3968 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.L. acknowledges support from the National Natural Science Foundation of China (grant no. U20A2047 and 51922038) and A.M.R. acknowledges funding through the NASA-EPSCoR Award no. NNH17ZHA002C.

Author information

Authors and Affiliations

Authors

Contributions

B.L. conceived the project. J.G. and B.L. developed the concept. J.G. conducted the experiments and data analysis. J.G., B.L. and A.M.R wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Bingan Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–34 and Tables 1–10.

Supplementary Video 1

The STEM-EELS surface line of the initial electrode.

Supplementary Video 2

The STEM-EELS surface line of the modified electrode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Fan, L., Rao, A.M. et al. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00810-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing