Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries

Subjects

Abstract

Manganese could be the element of choice for cathode materials used in large-scale energy storage systems owing to its abundance and low toxicity levels. However, both lithium- and sodium-ion batteries adopting this electrode chemistry suffer from rapid performance fading, suggesting a major technical barrier that must be overcome. Here we report a P3-type layered manganese oxide cathode Na0.6Li0.2Mn0.8O2 (NLMO) that delivers a high capacity of 240 mAh g−1 with outstanding cycling stability in a lithium half-cell. Combined experimental and theoretical characterizations reveal a characteristic topological feature that enables the good electrochemical performance. Specifically, the -α-γ- layer stack provides topological protection for lattice oxygen redox, whereas reversibility is absent in P2-structured NLMO, which takes an -α-β- configuration. The identified new order parameter opens an avenue towards the rational design of reversible Mn-rich cathode materials for sustainable batteries.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Ribbon­-ordered structure and electrochemistry of P2- and P3-Na0.6Li0.2Mn0.8O2 cathode materials.
Fig. 2: ODT structures and Na configurations in pristine P2- and P3-NLMO.
Fig. 3: Evolution of the ODT structures in P2- and P3-NaxLi0.2Mn0.8O2 cathodes on cycling.
Fig. 4: Topological protection mechanism during Na-ion deintercalation.
Fig. 5: Topological order.

Data availability

The data that support the findings detailed in this study are available in the article and its Supplementary Information or from the corresponding authors on reasonable request.

References

  1. Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    CAS  Google Scholar 

  2. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    CAS  Google Scholar 

  3. Zhu, X. et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 4, 392–401 (2021).

    Google Scholar 

  4. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    CAS  Google Scholar 

  5. Hua, W. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019).

    Google Scholar 

  6. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    CAS  Google Scholar 

  7. Du, K. et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016).

    CAS  Google Scholar 

  8. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    CAS  Google Scholar 

  9. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    CAS  Google Scholar 

  10. Li, Q. et al. Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 10, 1692 (2019).

    Google Scholar 

  11. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    CAS  Google Scholar 

  12. Seo, D. H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    CAS  Google Scholar 

  13. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    CAS  Google Scholar 

  14. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    CAS  Google Scholar 

  15. Saubanère, M., McCalla, E., Tarascon, J. M. & Doublet, M. L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Google Scholar 

  16. Xie, Y., Saubanère, M. & Doublet, M. L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    CAS  Google Scholar 

  17. Vergnet, J., Saubanère, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4, 420–434 (2020).

    CAS  Google Scholar 

  18. McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    CAS  Google Scholar 

  19. Rong, X. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018).

    CAS  Google Scholar 

  20. Yahia, M. B., Vergnet, J., Saubanere, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Google Scholar 

  21. Chen, Z., Li, J. & Zeng, X. C. Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers. J. Am. Chem. Soc. 141, 10751–10759 (2019).

    CAS  Google Scholar 

  22. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    CAS  Google Scholar 

  23. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    CAS  Google Scholar 

  24. Jacquet, Q. et al. Charge transfer band gap as an indicator of hysteresis in Li-disordered rock salt cathodes for Li-ion batteries. J. Am. Chem. Soc. 141, 11452–11464 (2019).

    CAS  Google Scholar 

  25. Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    CAS  Google Scholar 

  26. Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    CAS  Google Scholar 

  27. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    CAS  Google Scholar 

  28. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    CAS  Google Scholar 

  29. Lee, J. et al. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ. Sci. 8, 3255–3265 (2015).

    CAS  Google Scholar 

  30. Lee, J. et al. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nat. Commun. 8, 981 (2017).

    Google Scholar 

  31. Wang, Q. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021).

    CAS  Google Scholar 

  32. Mortemard de Boisse, B. et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat. Commun. 7, 11397 (2016).

    CAS  Google Scholar 

  33. Mortemard de Boisse, B. et al. Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries. Nat. Commun. 10, 2185 (2019).

    Google Scholar 

  34. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2019).

    Google Scholar 

  35. House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    CAS  Google Scholar 

  36. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    CAS  Google Scholar 

  37. Peterson, C. W., Li, T., Jiang, W., Hughes, T. L. & Bahl, G. Trapped fractional charges at bulk defects in topological insulators. Nature 589, 376–380 (2021).

    CAS  Google Scholar 

  38. Seidel, J. Nanoelectronics based on topological structures. Nat. Mater. 18, 188–190 (2019).

    CAS  Google Scholar 

  39. Kanyolo, G. M. et al. Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chem. Soc. Rev. 50, 3990–4030 (2021).

    CAS  Google Scholar 

  40. Masese, T. et al. Topological defects and unique stacking disorders in honeycomb layered oxide K2Ni2TeO6 nanomaterials: implications for rechargeable batteries. ACS Appl. Nano Mater. 4, 279–287 (2021).

    CAS  Google Scholar 

  41. Huang, J. et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat. Energy 6, 706–714 (2021).

    CAS  Google Scholar 

  42. Wu, J. et al. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Sci. Adv. 6, eaaw3871 (2020).

    CAS  Google Scholar 

  43. Han, M. et al. Stacking faults hinder lithium insertion in Li2RuO3. Adv. Energy Mater. 10, 2002631 (2020).

    CAS  Google Scholar 

  44. Yu, H. et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 2907–2915 (2016).

    CAS  Google Scholar 

  45. Zhang, Q. et al. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5−σ. Nat. Commun. 8, 104 (2017).

    Google Scholar 

  46. Okunishi, E. et al. Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164–165 (2009).

    Google Scholar 

  47. Zhang, Q. et al. Direct observation of multiferroic vortex domains in YMnO3. Sci. Rep. 3, 2741 (2013).

    Google Scholar 

  48. Chae, S. C. et al. Evolution of the domain topology in a ferroelectric. Phys. Rev. Lett. 110, 167601 (2013).

    CAS  Google Scholar 

  49. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

    CAS  Google Scholar 

  50. Kubota, K., Kumakura, S., Yoda, Y., Kuroki, K. & Komaba, S. Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Adv. Energy Mater. 8, 1703415 (2018).

    Google Scholar 

  51. Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    Google Scholar 

  52. Nayak, P. K. et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 6, 1502398 (2016).

    Google Scholar 

  53. Wei, Y. et al. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 137, 8364–8367 (2015).

    CAS  Google Scholar 

  54. Zheng, J. et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 138, 13326–13334 (2016).

    CAS  Google Scholar 

  55. Wang, R. et al. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2. Electrochem. Commun. 60, 70–73 (2015).

    CAS  Google Scholar 

  56. Ma, X., Kang, K., Ceder, G. & Meng, Y. S. Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2. J. Power Sources 173, 550–555 (2007).

    CAS  Google Scholar 

  57. House, R. A. et al. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 6, 781–789 (2021).

    CAS  Google Scholar 

  58. Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    CAS  Google Scholar 

  59. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    CAS  Google Scholar 

  60. Ott, S. et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020).

    CAS  Google Scholar 

  61. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  62. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  63. Shi, S. et al. Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016).

    Google Scholar 

  64. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    CAS  Google Scholar 

  65. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  66. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Google Scholar 

  67. Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    CAS  Google Scholar 

  68. Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

    CAS  Google Scholar 

  69. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica 99B, 81–85 (1980).

    Google Scholar 

  70. Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    CAS  Google Scholar 

  71. Lee, D. H., Xu, J. & Meng, Y. S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 15, 3304–3312 (2013).

    CAS  Google Scholar 

  72. Gao, A. et al. K-birnessite electrode obtained by ion exchange for potassium-ion batteries: Insight into the concerted ionic diffusion and K storage mechanism. Adv. Energy Mater. 9, 1802739 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Z190010), National Key R&D Program of China (no. 2019YFA0308500), the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB07030200, XDA21070500), the National Natural Science Foundation of China (grant nos. 51672307, 51991344, 52025025, 52072400, 52002394, 51725206, 11805034, 21704105 and U1930102), Beijing Natural Science Fund-Haidian Original Innovation Joint Fund (L182056), the Basic Science Centre Program of NSFC (grant no. 51788104) and the Natural Science Foundation of Guangdong Province (2017A030313021).

Author information

Authors and Affiliations

Authors

Contributions

L.G., Y.-S.H. and X.R. designed and supervised the project. X.R. synthesized, characterized (X-ray diffraction, XAS, Raman) and electrochemically tested the samples and analysed the data with X.Y., H.L., C.D., Y.-S.H., C.N. and L.C. Q.Z., X. Li and F.M. performed the STEM measurements and analysed data with A.G., T.S., Z.T., X.W., D.X. and D.S. W.H.K., H.C. and W.Y. performed neutron diffraction measurements and analysed data. A.G. designed and performed DFT calculations and analysed the data with X. Lu and L.G. A.G., X.R., Q.Z, Y.L., Q.Y., J.D., Y.-S.H. and L.G. wrote the manuscript with the help of the other authors. The manuscript reflects the contributions of all authors.

Corresponding authors

Correspondence to Xiaohui Rong, Yong-Sheng Hu or Lin Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–3, Notes 1–3 and references.

Supplementary Data 1

Crystallographic data for P2- and P3-Na0.6Li0.2Mn0.8O2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Zhang, Q., Li, X. et al. Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nat Sustain 5, 214–224 (2022). https://doi.org/10.1038/s41893-021-00809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00809-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing