Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A non-flammable hydrous organic electrolyte for sustainable zinc batteries

Subjects

Abstract

Aqueous zinc (Zn) batteries have long been considered a potentially more sustainable alternative to lithium-ion batteries because of their better environmental compatibility, enhanced safety and cost advantage. However, in the presence of an aqueous electrolyte, the Zn anode is poised to undergo dendrite failure, corrosion and hydrogen evolution, all of which resonate with each other leading to fast performance degradation. Here, in a break from the current aqueous battery path, we report a low-cost hydrous organic electrolyte involving a hydrated Zn(BF4)2 salt and an ethylene glycol solvent, which not only promotes the in situ formation of a favourable ZnF2 passivation layer to protect Zn from dendrite growth and side reactions but also embraces excellent non-flammability. Remarkably, the present Zn anode sustains a long-term cycling over 4,000 h at a current density of 0.5 mA cm−2 with a high Coulombic efficiency of 99.4% and shows an areal capacity as high as 5 mAh cm2. Equally intriguingly, the electrolyte can run across a wide temperature range from −30 °C to 40 °C without seriously compromising performance. The Zn//V2O5 full cells with our electrolyte also perform much better in terms of capacity retention than a device with an aqueous ZnSO4 electrolyte. Our findings suggest a promising direction for developing electrolyte solutions for practical Zn batteries which combine safety, performance and sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties of Zn(BF4)2/EG electrolytes.
Fig. 2: Morphology and composition of the generated ZnF2 layer.
Fig. 3: Electrochemical performance of Zn anodes in the 4 m Zn(BF4)2/EG electrolyte.
Fig. 4: Performance of Zn anodes in different electrolytes over a wide temperature range.
Fig. 5: Performance of Zn//V2O5 full cells in different electrolytes.

Similar content being viewed by others

Data availability

The data that support the findings detailed in this study are available in the article and its Supplementary Information or from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    Article  CAS  Google Scholar 

  2. Li, M., Lu, J., Chen, Z. W. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article  Google Scholar 

  3. Deng, J., Bae, C., Denlinger, A. & Miller, T. Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).

    Article  Google Scholar 

  4. Xu, C., Li, B., Du, H. & Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    Article  CAS  Google Scholar 

  5. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  CAS  Google Scholar 

  6. Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  7. Ma, L. et al. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020).

    Article  CAS  Google Scholar 

  8. Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    Article  CAS  Google Scholar 

  9. Jia, X., Liu, C., Neale, Z. G., Yang, J. & Cao, G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020).

    Article  CAS  Google Scholar 

  10. Deng, Y.-P. et al. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 5, 1665–1675 (2020).

    Article  CAS  Google Scholar 

  11. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).

    Article  CAS  Google Scholar 

  12. Parker, J. F. et al. Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    Article  CAS  Google Scholar 

  13. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  Google Scholar 

  14. Cao, L. et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).

    Article  CAS  Google Scholar 

  15. Guan, Q. et al. Dendrite‐free flexible fiber‐shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 9, 1901434 (2019).

    Article  CAS  Google Scholar 

  16. Blanc, L. E., Kundu, D. & Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020).

    Article  CAS  Google Scholar 

  17. Li, Q. et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11, 2003931 (2021).

    Article  CAS  Google Scholar 

  18. Yang, Y. et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33, 2007388 (2021).

    Article  CAS  Google Scholar 

  19. Cai, Z. et al. A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm–2 and 20 mAh cm–2. J. Am. Chem. Soc. 143, 3143–3152 (2021).

    Article  CAS  Google Scholar 

  20. Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    Article  CAS  Google Scholar 

  21. Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolyte using low‐cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).

    Article  CAS  Google Scholar 

  22. Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020).

    Article  CAS  Google Scholar 

  23. Qiu, H. et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019).

    Article  Google Scholar 

  24. Naveed, A. et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 31, 1900668 (2019).

    Article  Google Scholar 

  25. Wang, J. et al. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2020).

    Article  Google Scholar 

  26. Zhang, T. et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625–4665 (2020).

    Article  CAS  Google Scholar 

  27. Zhao, Z. M. et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019).

    Article  CAS  Google Scholar 

  28. Li, D., Cao, L., Deng, T., Liu, S. & Wang, C. Solid electrolyte interphase design for aqueous Zn batteries. Angew. Chem. Int. Ed. 60, 13035–13041 (2021).

    Article  CAS  Google Scholar 

  29. Guo, X. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6, 395–403 (2021).

    Article  CAS  Google Scholar 

  30. Edmondson, G. K. & Benisek, L. Solvent-applied flame-resist treatments for wool, cotton, and wool-cotton blends. J. Text. Inst. 68, 230–239 (1977).

    Article  CAS  Google Scholar 

  31. Ma, L. et al. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, 1908121 (2020).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. Solvent molecule cooperation enhancing lithium metal battery performance at both electrodes. Angew. Chem. Int. Ed. 59, 7797–7802 (2020).

    Article  CAS  Google Scholar 

  33. Moilanen, D. E., Wong, D., Rosenfeld, D. E., Fenn, E. E. & Fayer, M. Ion-water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange spectroscopy. Proc. Natl Acad. Sci. USA 106, 375–380 (2009).

    Article  CAS  Google Scholar 

  34. Sun, T., Du, H., Zheng, S., Shi, J. & Tao, Z. High power and energy density aqueous proton battery operated at –90 °C. Adv. Funct. Mater. 31, 2010127 (2021).

    Article  CAS  Google Scholar 

  35. Yang, H. et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020).

    Article  CAS  Google Scholar 

  36. Freire, M. G., Neves, C. M. S. S., Marrucho, I. M., Coutinho, J. A. P. & Fernandes, A. M. Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114, 3744–3749 (2010).

    Article  CAS  Google Scholar 

  37. Han, D. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16, 2001736 (2020).

    Article  CAS  Google Scholar 

  38. Zhang, N. et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3, 1366–1372 (2018).

    Article  CAS  Google Scholar 

  39. Yang, Y. et al. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 61, 617–625 (2019).

    Article  CAS  Google Scholar 

  40. Zhang, W., Liang, S., Fang, G., Yang, Y. & Zhou, J. Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nanomicro Lett. 11, 25 (2019).

    CAS  Google Scholar 

  41. Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018).

    Article  CAS  Google Scholar 

  42. Wan, F. et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018).

    Article  Google Scholar 

  43. Huang, J. Q., Guo, X., Lin, X., Zhu, Y. & Zhang, B. Hybrid aqueous/organic electrolytes enable the high-performance Zn-ion batteries. Research 2019, 2635310 (2019).

    Article  CAS  Google Scholar 

  44. Zhu, J. et al. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett. 13, 5408–5413 (2013).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  47. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  48. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  49. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (51972223, 51932005 and 51972312), China Postdoctoral Science Foundation (2021M692385), Natural Science Foundation of Tianjin (20JCYBJC01550) and the Local Innovative Research Teams Project of Guangdong Pearl River Talents Programme (2017BT01N111). We thank the National Supercomputer Center in Tianjin for computation support from TianHe-1(A) and the National Supercomputer Center in Guangzhou for computation support from Tianhe-2.

Author information

Authors and Affiliations

Authors

Contributions

Q.-H.Y., F.K. and Z.Weng proposed the project; Z.Weng and D.H. conceived the idea; and Z.Weng, F.K. and Q.-H.Y. supervised the project. D.H. and C.C. synthesized the samples and performed the characterizations and electrochemical measurements. K.Z. and L.Y. performed the simulation and data analysis. Z.Wang, Y.G., J.G. and Z.Z. contributed to the structural characterizations and electrochemical measurements. S.W. contributed to the structural and performance analysis. D.H., C.C., Z.Weng and Q.-H.Y. organized and wrote the manuscript. All authors contributed to the discussion and revision of the manuscript at all stages. D.H. and C.C. contributed equally to this work.

Corresponding authors

Correspondence to Zhe Weng, Feiyu Kang or Quan-Hong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Antonio Jesús Fernández Romero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−26, Tables 1−3 and References.

Reporting Summary.

Supplementary Video 1

Flammability tests of the dry cotton ball.

Supplementary Video 2

Flammability tests of EG and the Zn(BF4)2/EG electrolyte.

Source data

Source data for Fig. 1.

Price and volatility, flammability characterization of the Zn(BF4)2/EG electrolyte, as well as the internal interaction within the Zn(BF4)2/EG electrolyte.

Source data for Fig. 2.

SEM, XRD, Raman and XPS results of the Zn foil soaked in the 4 m Zn(BF4)2/EG electrolyte and the reference aqueous ZnSO4 electrolyte.

Source data for Fig. 3.

Long-term cycling, CE tests and SEM and AFM images of the Zn anodes cycled in the 4 m Zn(BF4)2/EG electrolyte and the reference aqueous ZnSO4 electrolyte.

Source data for Fig. 4.

Tolerance of the 4 m Zn(BF4)2/EG electrolyte to a wide temperature range, and the performance of Zn anodes under harsh conditions in different electrolytes.

Source data for Fig. 5.

Room- and low-temperature performance of Zn//V2O5 full cells, and images of the cycled V2O5 cathodes and the cycled separators.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Cui, C., Zhang, K. et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain 5, 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00800-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing