Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater

Abstract

The oceans offer a virtually infinite source of uranium and could sustain nuclear power technology in terms of fuel supply. However, the current processes to extract uranium from seawater remain neither economically viable nor efficient enough to compete with uranium ore mining. Microporous polymers are emerging materials for the adsorption of uranyl ions due to their rich binding sites, but they still fall short of satisfactory performance. Here, inspired by the ubiquitous fractal structure in biology that is favourable for mass and fluid transfer, we describe a hierarchical porous membrane based on polymers of intrinsic microporosity that can capture uranium in seawater. This biomimetic membrane allows for rapid diffusion of uranium species, leading to a 20-fold higher uranium adsorption capacity in a uranium-spiked water solution (32 ppm) than the membrane with only intrinsic microporosity. Furthermore, in natural seawater, the membrane can extract as much uranium as 9.03 mg g−1 after four weeks. This work suggests a strategy to be extended to the rational design of a large family of microporous polymer adsorbents that could fulfil the vast promise of the oceans to fuel a reliable and potentially sustainable energy source.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological inspiration and schematic of the bioinspired hierarchical porous membrane.
Fig. 2: Characterization of PIM-1, AO-PIM-1 and the hierarchical porous membrane.
Fig. 3: Uranium adsorption performance of the hierarchical porous membrane.
Fig. 4: pH dependence of uranium adsorption performance of the hierarchical porous membrane.
Fig. 5: Reusability of the hierarchical porous membrane and its uranium adsorption performance in seawater.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the paper and its Supplementary Information files.

References

  1. IEA World Energy Outlook 2019 (OECD, 2019); https://doi.org/10.1787/caf32f3b-en

  2. Chen, S., Xing, W. & Du, X. Forecast of the demand and supply plan of China’s uranium resources till 2030. Int. J. Green Energy 14, 638–649 (2017).

    Article  CAS  Google Scholar 

  3. Chadwick, M. B. et al. ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl. Data Sheets 107, 2931–3060 (2006).

    Article  CAS  Google Scholar 

  4. Uranium 2018: Resources, Production and Demand (OECD Nuclear Energy Agency and the International Atomic Energy Agency, 2019); https://doi.org/10.1787/uranium-2018-en

  5. Abney, C. W., Mayes, R. T., Saito, T. & Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 117, 13935–14013 (2017).

    Article  CAS  Google Scholar 

  6. Ku, T.-L., Mathieu, G. G. & Knauss, K. G. Uranium in open ocean: concentration and isotopic composition. Deep Sea Res. 24, 1005–1017 (1977).

    Article  CAS  Google Scholar 

  7. Gunathilake, C., Górka, J., Dai, S. & Jaroniec, M. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A 3, 11650–11659 (2015).

    Article  CAS  Google Scholar 

  8. Zhang, W., Ye, G. & Chen, J. Novel mesoporous silicas bearing phosphine oxide ligands with different alkyl chains for the binding of uranium in strong HNO3 media. J. Mater. Chem. A 1, 12706–12709 (2013).

    Article  CAS  Google Scholar 

  9. Li, H. et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal–organic frameworks. Appl. Catal. B 254, 47–54 (2019).

    Article  CAS  Google Scholar 

  10. Wang, L. L. et al. Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework. J. Mater. Chem. A 3, 13724–13730 (2015).

    Article  CAS  Google Scholar 

  11. Yuan, Y. et al. A bio-inspired nano-pocket spatial structure for targeting uranyl capture. Angew. Chem. Int. Ed. 59, 4262–4268 (2020).

    Article  CAS  Google Scholar 

  12. Cui, W.-R. et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 11, 436 (2020).

    Article  CAS  Google Scholar 

  13. Sun, Q. et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30, 1705479 (2018).

    Article  Google Scholar 

  14. Xiong, X. H. et al. Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions. Adv. Sci. 6, 1900547 (2019).

    Article  Google Scholar 

  15. Li, Z. et al. Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chem. Sci. 11, 4747–4752 (2020).

    Article  CAS  Google Scholar 

  16. Li, C. et al. Engineered transport in microporous materials and membranes for clean energy technologies. Adv. Mater. 30, 1704953 (2018).

    Article  Google Scholar 

  17. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020).

    Article  CAS  Google Scholar 

  18. Zuo, P. et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem. Int. Ed. 59, 9564–9573 (2020).

    Article  CAS  Google Scholar 

  19. McKeown, N. B. Polymers of intrinsic microporosity (PIMs). Polymer 202, 122736 (2020).

    Article  CAS  Google Scholar 

  20. Satilmis, B., Isık, T., Demir, M. M. & Uyar, T. Amidoxime functionalized polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water. Appl. Surf. Sci. 467–468, 648–657 (2019).

    Article  Google Scholar 

  21. Sihn, Y. H., Byun, J., Patel, H. A., Lee, W. & Yavuz, C. T. Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents. RSC Adv. 6, 45968–45976 (2016).

    Article  CAS  Google Scholar 

  22. Dai, S. Catalyst: challenges in development of adsorbents for recovery of uranium from seawater. Chem 7, 537–539 (2021).

    Article  CAS  Google Scholar 

  23. Kim, J. et al. Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments. Ind. Eng. Chem. Res. 52, 9433–9440 (2013).

    Article  CAS  Google Scholar 

  24. Dong, A. et al. Functionalization and fabrication of soluble polymers of intrinsic microporosity for CO2 transformation and uranium extraction. Eng. Sci. 5, 56–65 (2018).

    Google Scholar 

  25. McCulloh, K. A., Sperry, J. S. & Adler, F. R. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).

    Article  CAS  Google Scholar 

  26. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Article  CAS  Google Scholar 

  27. Sherman, T. F. On connecting large vessels to small: the meaning of Murray’s law. J. Gen. Physiol. 78, 431–453 (1981).

    Article  CAS  Google Scholar 

  28. Wang, X. et al. Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano 13, 1060–1070 (2019).

    CAS  Google Scholar 

  29. Zheng, X. et al. Bio-inspired Murray materials for mass transfer and activity. Nat. Commun. 8, 14921 (2017).

    Article  CAS  Google Scholar 

  30. Patel, H. A. & Yavuz, C. T. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem. Commun. 48, 9989–9991 (2012).

    Article  CAS  Google Scholar 

  31. Thompson, K. A. et al. N-Aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).

    Article  CAS  Google Scholar 

  32. Yu, G. et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity. Adv. Mater. 31, 1806853 (2019).

    Article  Google Scholar 

  33. Saito, T. et al. Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A 2, 14674–14681 (2014).

    Article  CAS  Google Scholar 

  34. Wiechert, A. I. et al. Influence of hydrophilic groups and metal-ion adsorption on polymer-chain conformation of amidoxime-based uranium adsorbents. J. Colloid Interface Sci. 524, 399–408 (2018).

    Article  CAS  Google Scholar 

  35. Ma, C. et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv. Sci. 6, 1900085 (2019).

    Article  Google Scholar 

  36. Wang, X.-F. et al. Cooperative capture of uranyl ions by a carbonyl-bearing hierarchical-porous Cu–organic framework. Angew. Chem. Int. Ed. 58, 18808–18812 (2019).

    Article  CAS  Google Scholar 

  37. Weber, W. & Morris, J. C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–60 (1963).

    Article  Google Scholar 

  38. Ladshaw, A. P. et al. First-principles integrated adsorption modeling for selective capture of uranium from seawater by polyamidoxime sorbent materials. ACS Appl. Mater. Interfaces 10, 12580–12593 (2018).

    Article  CAS  Google Scholar 

  39. Yuan, D. et al. Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem. Eng. J. 285, 358–367 (2016).

    Article  CAS  Google Scholar 

  40. Endrizzi, F., Leggett, C. J. & Rao, L. Scientific basis for efficient extraction of uranium from seawater. I: Understanding the chemical speciation of uranium under seawater conditions. Ind. Eng. Chem. Res. 55, 4249–4256 (2016).

    Article  CAS  Google Scholar 

  41. Guo, X., Wang, Y., Li, C., Huai, P. & Wu, G. Optimum complexation of uranyl with amidoxime in aqueous solution under different pH levels: density functional theory calculations. Mol. Phys. 113, 1327–1336 (2015).

    Article  CAS  Google Scholar 

  42. Zhao, S. et al. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew. Chem. Int. Ed. 58, 14979–14985 (2019).

    Article  CAS  Google Scholar 

  43. Wiechert, A. I. et al. Uranium recovery from seawater using amidoxime-based braided polymers synthesized from acrylic fibers. Ind. Eng. Chem. Res. 59, 13988–13996 (2020).

    Article  CAS  Google Scholar 

  44. Xu, X. et al. Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber. J. Mater. Chem. A 8, 22032–22044 (2020).

    Article  CAS  Google Scholar 

  45. Konnertz, N. et al. Molecular mobility of the high performance membrane polymer PIM-1 as investigated by dielectric spectroscopy. ACS Macro Lett. 5, 528–532 (2016).

    Article  CAS  Google Scholar 

  46. Heuchel, M., Fritsch, D., Budd, P. M., McKeown, N. B. & Hofmann, D. Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). J. Membr. Sci. 318, 84–99 (2008).

    Article  CAS  Google Scholar 

  47. Larsen, G. S., Lin, P., Hart, K. E. & Colina, C. M. Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44, 6944–6951 (2011).

    Article  CAS  Google Scholar 

  48. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  49. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  50. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article  CAS  Google Scholar 

  51. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  Google Scholar 

  52. Lindahl, E., Hess, B. & van der Spoel, D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001).

    Article  CAS  Google Scholar 

  53. Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. in Solving Software Challenges for Exascale (eds Markidis, S. & Laure, E.) 3–27 (Lecture Notes in Computer Science 8759, Springer, 2015).

  54. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    Article  CAS  Google Scholar 

  55. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  56. Larsen, G. S., Lin, P., Siperstein, F. R. & Colina, C. M. Methane adsorption in PIM-1. Adsorption 17, 21–26 (2011).

    Article  CAS  Google Scholar 

  57. AMBER v.13 (Univ. California, San Francisco, 2013).

  58. Frisch, M. et al. Gaussian 09 Revision E.01 (Gaussian, 2009).

Download references

Acknowledgements

L.W. acknowledges funding support from the National Natural Science Foundation (grant no. 21625303) and the National Key R&D Program of China (grant nos 2017YFA0206904 and 2017YFA0206900). L.J. acknowledges funding support from the National Natural Science Foundation (grant no. 21988102). X.-Y.K. acknowledges funding support from the National Natural Science Foundation (grant no. 21905287).

Author information

Authors and Affiliations

Authors

Contributions

L.W. proposed the research direction and guided the project. L.Y. designed and performed the experiments. L.Y., H.X., X.-Y.K., P.L., W.X., L.F. and L.J. analysed and discussed the experimental results and drafted the paper. H.X. performed the MD simulations. Y.Q. and X.Z. joined the discussion of the data and gave helpful suggestions. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Liping Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Chong Liu, Hongjuan Ma, Costas Tsouris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xiao, H., Qian, Y. et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat Sustain 5, 71–80 (2022). https://doi.org/10.1038/s41893-021-00792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00792-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing