Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

China’s future food demand and its implications for trade and environment

Abstract

Satisfying China’s food demand without harming the environment is one of the greatest sustainability challenges for the coming decades. Here we provide a comprehensive forward-looking assessment of the environmental impacts of China’s growing demand on the country itself and on its trading partners. We find that the increasing food demand, especially for livestock products (~16%–30% across all scenarios), would domestically require ~3–12 Mha of additional pasture between 2020 and 2050, resulting in ~−2% to +16% growth in agricultural greenhouse gas (GHG) emissions. The projected ~15%–24% reliance on agricultural imports in 2050 would result in ~90–175 Mha of agricultural land area and ~88–226 MtCO2-equivalent yr−1of GHG emissions virtually imported to China, which account for ~26%–46% and ~13%–32% of China’s global environmental impacts, respectively. The distribution of the environmental impacts between China and the rest of the world would substantially depend on development of trade openness. Thus, to limit the negative environmental impacts of its growing food consumption, besides domestic policies, China needs to also take responsibility in the development of sustainable international trade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in demand, production and trade of agricultural products in China.
Fig. 2: Domestic versus virtually imported changes of environmental impacts.
Fig. 3: Environmental impacts on exporting regions.
Fig. 4: Comparison of the global environmental impacts of China’s food demand under different scenarios by 2050.

Similar content being viewed by others

Data availability

The main data supporting the results of this study can be found in the Supplementary Information, and other relevant data are available in the IIASA DARE repository (https://dare.iiasa.ac.at/126/). Source data are provided with this paper.

Code availability

The code used to present the results in this study is available from the corresponding author upon request.

References

  1. He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).

    Article  Google Scholar 

  2. FAOSTAT: Food and Agriculture Data (FAO, 2021); http://www.fao.org/faostat/en/

  3. China’s Import and Export of Agricultural Products in 2018 (Ministry of Agriculture, 2019); http://www.moa.gov.cn/ztzl/nybrl/rlxx/201902/t20190201_6171079.htm

  4. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  5. China Statistical Yearbook (National Bureau of Statistics of China, accessed 1 February 2020); http://www.stats.gov.cn/english/Statisticaldata/AnnualData/

  6. Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Article  CAS  Google Scholar 

  7. Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article  CAS  Google Scholar 

  8. AQUASTAT (FAO, 2016); http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en

  9. Rohwer, J., Gerten, D. & Lucht, W. Development of Functional Irrigation Types for Improved Global Crop Modelling Report No. 104 (Potsdam Institute for Climate Impact Research, 2007).

  10. Caro, D., Lopresti, A., Davis, S. J., Bastianoni, S. & Caldeira, K. CH4 and N2O emissions embodied in international trade of meat. Environ. Res. Lett. 9, 114005 (2014).

    Article  Google Scholar 

  11. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Article  Google Scholar 

  12. Chen, B. et al. Global land–water nexus: agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 613–614, 931–943 (2018).

    Google Scholar 

  13. Decoupling China’s Soy Imports from Deforestation Driven Carbon Emissions in Brazil (CDP Worldwide, 2019).

  14. Du, Y. et al. A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nat. Commun. 9, 4133 (2018).

    Article  Google Scholar 

  15. OECD–FAO Agricultural Outlook 2019–2028 (OECD, 2019).

  16. Ma, L. et al. Exploring future food provision scenarios for china. Environ. Sci. Technol. 53, 1385–1393 (2019).

    Article  CAS  Google Scholar 

  17. Wittwer, G. & Horridge, M. A multi-regional representation of China’s agricultural sectors. China Agric. Econ. Rev. 1, 420–434 (2009).

    Article  Google Scholar 

  18. Zhang, A. et al. The implications for energy crops under China’s climate change challenges. Energy Econ. 96, 105103 (2021).

    Article  Google Scholar 

  19. Gao, J. et al. An integrated assessment of the potential of agricultural and forestry residues for energy production in China. Glob. Change Biol. Bioenergy 8, 880–893 (2016).

    Article  Google Scholar 

  20. Dai, H., Masui, T., Matsuoka, Y. & Fujimori, S. Assessment of China’s climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model. Energy Policy 39, 2875–2887 (2011).

    Article  Google Scholar 

  21. Mi, Z. et al. Socioeconomic impact assessment of China’s CO2 emissions peak prior to 2030. J. Clean. Prod. 142, 2227–2236 (2017).

    Article  Google Scholar 

  22. Yu, Y., Feng, K., Hubacek, K. & Sun, L. Global implications of China’s future food consumption. J. Ind. Ecol. 20, 593–602 (2016).

    Article  Google Scholar 

  23. Graham, N. T. et al. Future changes in the trading of virtual water. Nat. Commun. 11, 3632 (2020).

    Article  CAS  Google Scholar 

  24. Xie, W. et al. Climate change impacts on China’s agriculture: the responses from market and trade. China Econ. Rev. 62, 101256 (2020).

    Article  Google Scholar 

  25. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  Google Scholar 

  26. Hasegawa, T., Havlík, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2, 826–833 (2019).

    Article  Google Scholar 

  27. Pastor, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).

    Article  Google Scholar 

  28. Janssens, C. et al. Global hunger and climate change adaptation through international trade. Nat. Clim. Change 10, 829–835 (2020).

    Article  Google Scholar 

  29. Frank, S. et al. Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat. Commun. 9, 1060 (2018).

    Article  Google Scholar 

  30. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  31. Pathways to Sustainable Land-Use and Food Systems (FABLE, 2019).

  32. Robinson, T. P. et al. Global Livestock Production Systems (FAO and ILRI, 2011).

  33. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  34. Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Article  Google Scholar 

  35. Bonnet, C., Bouamra-Mechemache, Z., Réquillart, V. & Treich, N. Viewpoint: regulating meat consumption to improve health, the environment and animal welfare. Food Policy 97, 101847 (2020).

    Article  Google Scholar 

  36. Zhong, S. & Chen, J. How environmental beliefs affect consumer willingness to pay for the greenness premium of low-carbon agricultural products in China: theoretical model and survey-based evidence. Sustainability 11, 592 (2019).

    Article  Google Scholar 

  37. Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).

    Article  CAS  Google Scholar 

  38. Sun, J. et al. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl Acad. Sci. USA 115, 5415–5419 (2018).

    Article  CAS  Google Scholar 

  39. Zuo, L. et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 1, 304–313 (2018).

    Article  Google Scholar 

  40. Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains (FAO, 2013).

  41. Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).

    Article  CAS  Google Scholar 

  42. Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).

  43. le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).

    Article  Google Scholar 

  44. Acquaye, A. A., Yamoah, F. A. & Feng, K. IntJ. An integrated environmental and fairtrade labelling scheme for product supply chains. Int. J. Prod. Econ. 164, 472–483 (2015).

    Article  Google Scholar 

  45. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article  Google Scholar 

  46. Soterroni, A. C. et al. Future environmental and agricultural impacts of Brazil’s Forest Code. Environ. Res. Lett. 13, 074021 (2018).

    Article  Google Scholar 

  47. Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).

    Article  Google Scholar 

  48. Balkovič, J. et al. Global wheat production potentials and management flexibility under the representative concentration pathways. Glob. Planet. Change 122, 107–121 (2014).

    Article  Google Scholar 

  49. Williams, J. R., Jones, C. A., Kiniry, J. R. & Spanel, D. A. The EPIC crop growth model. Trans. ASAE 32, 0497–0511 (1989).

    Article  Google Scholar 

  50. Kindermann, G., McCallum, I., Fritz, S. & Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn. 42, 387–396 (2008).

    Article  Google Scholar 

  51. Parton, W. J. et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 7, 785–809 (1993).

    Article  CAS  Google Scholar 

  52. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  53. Takayama, T. & Judge, G. G. Spatial and Temporal Price Allocation Models (North Holland Publishing Company, 1971).

  54. Gaulier, G. & Zignago, S. BACI: International Trade Database at the Product-Level. The 1994–2007 Version Working Paper 2010-23 (CEPII, 2010); https://doi.org/10.2139/ssrn.1994500

  55. Bouët, A., Decreux, Y., Fontagné, L., Jean, S. & Laborde, D. Assessing applied protection across the world. Rev. Int. Econ. 16, 850–863 (2008).

    Google Scholar 

  56. OECD–FAO Agricultural Outlook 2020–2029 (OECD, 2020); https://doi.org/10.1787/1112c23b-en

  57. IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  58. Diaz, S. et al. Summary for Policymakers. In Global Assessment Report on Biodiversity and Ecosystem Services advance unedited version (IPBES, 2019).

  59. Elleby, C., Domínguez, I. P., Adenauer, M. & Genovese, G. Impacts of the COVID-19 pandemic on the global agricultural markets. Environ. Resour. Econ. 76, 1067–1079 (2020).

    Article  Google Scholar 

  60. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article  Google Scholar 

  61. Fujimori, S. et al. SSP3: AIM implementation of shared socioeconomic pathways. Glob. Environ. Change 42, 268–283 (2017).

    Article  Google Scholar 

  62. Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

    Article  Google Scholar 

  63. Shared Socioeconomic Pathways Database v2 (IIASA, 2018); https://tntcat.iiasa.ac.at/SspDb

  64. Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).

    Article  Google Scholar 

  65. Muhammad, A., Seale, J. L., Meade, B. & Regmi, A. International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data (USDA, 2011).

  66. van Zeist, W. J. et al. Are scenario projections overly optimistic about future yield progress? Glob. Environ. Change 64, 102120 (2020).

    Article  Google Scholar 

  67. Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).

    Article  CAS  Google Scholar 

  68. Herrero, M., Havlik, P., McIntire, J., Palazzo, A. & Valin, H. African Livestock Futures: Realizing the Potential of Livestock for Food Security, Poverty Reduction and the Environment in Sub-Saharan Africa (Office of the Special Representative of the UN Secretary General for Food Security and Nutrition, United Nations System Influenza Coordination, 2014).

  69. Stehfest, E. et al. Key determinants of global land-use projections. Nat. Commun. 10, 2166 (2019).

    Article  Google Scholar 

  70. Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

    Article  Google Scholar 

  71. Würtenberger, L., Koellner, T. & Binder, C. R. Virtual land use and agricultural trade: estimating environmental and socio-economic impacts. Ecol. Econ. 57, 679–697 (2006).

    Article  Google Scholar 

  72. Huang, G. et al. The environmental and socioeconomic trade-offs of importing crops to meet domestic food demand in China. Environ. Res. Lett. 14, 094021 (2019).

    Article  CAS  Google Scholar 

  73. IPCC IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006).

  74. Sandström, V. et al. The role of trade in the greenhouse gas footprints of EU diets. Glob. Food Sec. 19, 48–55 (2018).

    Article  Google Scholar 

  75. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from UN Sustainable Development Solutions Network (SDSN)—A. Mosnier, J. Poncet and G. Schmidt-Traub—who initiated this project in the context of FABLE, accompanied it throughout its duration and provided many valuable comments. L.M. acknowledges support from the National Natural Science Foundation of China, NSFC (31972517); the Youth Innovation Promotion Association, CAS (2019101); Key Laboratory of Agricultural Water Resources, CAS (ZD201802); the Outstanding Young Scientists Project of Natural Science Foundation of Hebei (C2019503054). This research has also received funding from the Gordon and Betty Moore Foundation, Norwegian International Climate and Forest Initiative and World Resources Institute. Finally, H.Z. acknowledges IIASA’s Young Scientists Summer Program for providing collaboration opportunities.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., P.H. and L.M. designed the study. H.Z., J.C., P.H., M.v.D. and H.V. contributed the data analysis. H.Z., J.C. and P.H. wrote the manuscript with contributions from H.V. and C.J. All authors contributed to the interpretation of the results and commented on the manuscript.

Corresponding authors

Correspondence to Petr Havlík or Lin Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Sustainability thanks Guolin Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Tables 1–7 and Figs. 1–18.

Source data

Source Data Fig. 1

Raw data and processed data.

Source Data Fig. 2

Raw data and processed data.

Source Data Fig. 3

Raw data and processed data.

Source Data Fig. 4

Raw data and processed data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Chang, J., Havlík, P. et al. China’s future food demand and its implications for trade and environment. Nat Sustain 4, 1042–1051 (2021). https://doi.org/10.1038/s41893-021-00784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00784-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene