Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advancing energy and well-being research

Abstract

Energy and climate change mitigation analysis rooted in economic relationships alone is largely disconnected from the advancement of well-being. We propose an interdisciplinary research agenda that relates energy use to individual well-being through consumption by building bridges between the social sciences, energy–economic models and climate policy analysis. Through these linkages, we may better characterize the potential for less harmful and more meaningful consumption that improves human well-being while reducing carbon emissions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Conceptual linkages between human well-being and climate change through consumption and its derived energy demand.

References

  1. Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 260–263 (2018).

    Google Scholar 

  2. McCollum, D. L. et al. Connecting the sustainable development goals by their energy inter-linkages. Environ. Res. Lett. 13, 033006 (2018).

    Google Scholar 

  3. Ürge-Vorsatz, D., Herrero, S. T., Dubash, N. K. & Lecocq, F. Measuring the co-benefits of climate change mitigation. Annu. Rev. Environ. Resour. 39, 549–582 (2014).

    Google Scholar 

  4. Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Google Scholar 

  5. Vita, G., Rao, N. D., Usubiaga-Liano, A., Min, J. & Wood, R. Durable goods drive two-thirds of global households’ final energy footprints. Environ. Sci. Technol. 55, 3175–3187 (2021).

    CAS  Google Scholar 

  6. Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    CAS  Google Scholar 

  7. Veblen, T. The Theory of the Leisure Class (Houghton Mifflin, 1973).

  8. Max-Neef, M. A. Human Scale Development: Conception, Application and Further Reflections (Apex Press, 1991).

  9. Kahneman, D. & Deaton, A. High income improves evaluation of life but not emotional well-being. Proc. Natl Acad. Sci. USA 107, 16489–16493 (2010).

    CAS  Google Scholar 

  10. Kahneman, D., Krueger, A. B., Schkade, D., Schwarz, N. & Stone, A. A. Would you be happier if you were richer? A focusing illusion. Science 312, 1908–1910 (2006).

    CAS  Google Scholar 

  11. Mazur, A. & Rosa, E. Energy and life-style. Science 186, 607–610 (1974).

    CAS  Google Scholar 

  12. Milanovic, B. Worlds Apart: Measuring International and Global Inequality (Princeton Univ. Press, 2005).

  13. Costanza, R. Time to leave GDP behind. Nature 505, 283–285 (2014).

    Google Scholar 

  14. Steinberger, J. K. & Roberts, J. T. From constraint to sufficiency: the decoupling of energy and carbon from human needs, 1975–2005. Ecol. Econ. 70, 425–433 (2010).

    Google Scholar 

  15. Arto, I., Capellán-Pérez, I., Lago, R., Bueno, G. & Bermejo, R. The energy requirements of a developed world. Energy Sustain. Dev. 33, 1–13 (2016).

    Google Scholar 

  16. Knight, K. W. & Rosa, E. A. The environmental efficiency of well-being: a cross-national analysis. Soc. Sci. Res. 40, 931–949 (2011).

    Google Scholar 

  17. Rao, N. D., Min, J. & Mastrucci, A. Energy requirements for decent living in India, Brazil and South Africa. Nat. Energy 4, 1025–1032 (2019).

    Google Scholar 

  18. Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Global Environ. Change 65, 102168 (2020).

    Google Scholar 

  19. Di Giulio, A. & Fuchs, D. Sustainable consumption corridors: concept, objections, and responses. GAIA 23, 184–192 (2014).

    Google Scholar 

  20. Rosa, E., Machlis, G. & Keating, K. Energy and society. Annu. Rev. Sociol. 14, 149–172 (1988).

    Google Scholar 

  21. Herendeen, R. & Tanaka, J. Energy cost of living. Energy 1, 165–178 (1976).

    Google Scholar 

  22. van Beek, L., Hajer, M., Pelzer, P., van Vuuren, D. & Cassen, C. Anticipating futures through models: the rise of integrated assessment modelling in the climate science–policy interface since 1970. Glob. Environ. Change 65, 102191 (2020).

    Google Scholar 

  23. Keppo, I. et al. Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models. Environ. Res. Lett. 16, 053006 (2021).

    Google Scholar 

  24. Pachauri, S. et al. Pathways to achieve universal household access to modern energy by 2030. Environ. Res. Lett. 8, 024015 (2013).

    Google Scholar 

  25. Kalt, G., Wiedenhofer, D., Görg, C. & Haberl, H. Conceptualizing energy services: a review of energy and well-being along the Energy Service Cascade. Energy Res. Soc. Sci. 53, 47–58 (2019).

    Google Scholar 

  26. Kowsari, R. & Zerriffi, H. Three dimensional energy profile: a conceptual framework for assessing household energy use. Energy Policy 39, 7505–7517 (2011).

    Google Scholar 

  27. Wilson, C. & Dowlatabadi, H. Models of decision making and residential energy use. Annu. Rev. Environ. Resour. 32, 169–203 (2007).

    Google Scholar 

  28. McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. Transp. Res. D 55, 322–342 (2017).

    Google Scholar 

  29. Oswald, Y., Owen, A. & Steinberger, J. K. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5, 231–239 (2020).

    Google Scholar 

  30. Mastrucci, A., Min, J., Usubiaga-Liaño, A. & Rao, N. D. A framework for modelling consumption-based energy demand and emission pathways. Environ. Sci. Technol. 54, 1799–1807 (2020).

    CAS  Google Scholar 

  31. Ivanova, D. et al. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526–536 (2016).

    CAS  Google Scholar 

  32. Lan, J., Malik, A., Lenzen, M., McBain, D. & Kanemoto, K. A structural decomposition analysis of global energy footprints. Appl. Energy 163, 436–451 (2016).

    Google Scholar 

  33. Zhong, W., Song, J., Yang, W., Fang, K. & Liu, X. Evolving household consumption-driven industrial energy consumption under urbanization: a dynamic input–output analysis. J. Clean. Prod. 289, 125732 (2021).

    Google Scholar 

  34. Wilson, C., Kerr, L., Sprei, F., Vrain, E. & Wilson, M. Potential climate benefits of digital consumer innovations. Annu. Rev. Environ. Resour. 45, 113–144 (2020).

    Google Scholar 

  35. Milnar, M. & Ramaswami, A. Impact of urban expansion and in situ greenery on community-wide carbon emissions: method development and insights from 11 US cities. Environ. Sci. Technol. 54, 16086–16096 (2020).

    CAS  Google Scholar 

  36. Tong, K., Nagpure, A. S. & Ramaswami, A. All urban areas’ energy use data across 640 districts in India for the year 2011. Sci. Data 8, 104 (2021).

    Google Scholar 

  37. Zheng, H. et al. Linking city‐level input–output table to urban energy footprint: construction framework and application. J. Ind. Ecol. 23, 781–795 (2019).

    Google Scholar 

  38. Chen, S. & Chen, B. Urban energy consumption: different insights from energy flow analysis, input–output analysis and ecological network analysis. Appl. Energy 138, 99–107 (2015).

    Google Scholar 

  39. Global Energy Assessment—Toward a Sustainable Future (International Institute for Applied Systems Analysis, 2012).

  40. Chen, S., Zhu, F., Long, H. & Yang, J. Energy footprint controlled by urban demands: how much does supply chain complexity contribute? Energy 183, 561–572 (2019).

    Google Scholar 

  41. Office for National Statistics. An overview of lifestyles and wider characteristics linked to healthy life expectancy in England: June 2017. Oxf. Bull. Econ. Stat. 72, 717–743 (2017).

  42. Agnew, M., Pettifor, H. & Wilson, C. Lifestyles in Public Health, Marketing and Pro-environmental Research (Tyndall Centre for Climate Change Research, 2020).

  43. Schipper, L., Bartlett, L., Hawk, D. & Vine, E. Linking life-styles and energy use: a matter of time? Annu. Rev. Energy 14, 273–320 (1989).

    Google Scholar 

  44. Lutzenhiser, L. Social and behavioral aspects of energy use. Annu. Rev. Energy Environ. 18, 247–289 (1993).

    Google Scholar 

  45. Graham, H. & White, P. C. Social determinants and lifestyles: integrating environmental and public health perspectives. Public Health 141, 270–278 (2016).

    CAS  Google Scholar 

  46. Jensen, M. Lifestyle: suggesting mechanisms and a definition from a cognitive science perspective. Environ. Dev. Sustain. 11, 215–228 (2007).

    Google Scholar 

  47. Giddens, A. Modernity and Self-Identity: Self and Society in the Late Modern Age (Stanford Univ. Press, 1991).

  48. Chen, C. et al. Energy consumption and carbon footprint accounting of urban and rural residents in Beijing through Consumer Lifestyle Approach. Ecol. Indic. 98, 575–586 (2019).

    Google Scholar 

  49. Hayward, B. & Roy, J. Sustainable living: bridging the North-South divide in lifestyles and consumption debates. Annu. Rev. Environ. Resour. 44, 157–175 (2019).

    Google Scholar 

  50. Watts, N. et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 394, 1836–1878 (2019).

    Google Scholar 

  51. Brown, H. S. & Vergragt, P. J. From consumerism to wellbeing: toward a cultural transition? J. Clean. Prod. 132, 308–317 (2016).

    Google Scholar 

  52. Zamani, B., Sandin, G. & Peters, G. M. Life cycle assessment of clothing libraries: can collaborative consumption reduce the environmental impact of fast fashion? J. Clean. Prod. 162, 1368–1375 (2017).

    Google Scholar 

  53. Yang, H., Ma, M., Thompson, J. R. & Flower, R. J. Waste management, informal recycling, environmental pollution and public health. J. Epidemiol. Community Health 72, 237–243 (2018).

    Google Scholar 

  54. Creutzig, F. et al. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41, 173–198 (2016).

    Google Scholar 

  55. Akenji, L. & Chen, H. A Framework for Shaping Sustainable Lifestyles: Determinants and Strategies (United Nations Environmental Programme, 2016).

  56. Sanquist, T. F., Orr, H., Shui, B. & Bittner, A. C. Lifestyle factors in U.S. residential electricity consumption. Energy Policy 42, 354–364 (2012).

    Google Scholar 

  57. Rao, N. D. & Ummel, K. White goods for white people? Drivers of electric appliance growth in emerging economies. Energy Res. Soc. Sci. 27, 106–116 (2017).

    Google Scholar 

  58. Andersson, D., Nässén, J., Larsson, J. & Holmberg, J. Greenhouse gas emissions and subjective well-being: an analysis of Swedish households. Ecol. Econ. 102, 75–82 (2014).

    Google Scholar 

  59. Ambrey, C. L. & Daniels, P. Happiness and footprints: assessing the relationship between individual well-being and carbon footprints. Environ. Dev. Sustain. 19, 895–920 (2016).

    Google Scholar 

  60. Verhofstadt, E., Van Ootegem, L., Defloor, B. & Bleys, B. Linking individuals’ ecological footprint to their subjective well-being. Ecol. Econ. 127, 80–89 (2016).

    Google Scholar 

  61. Lenzen, M. & Cummins, R. Happiness versus the environment—a case study of Australian lifestyles. Challenges 4, 56–74 (2013).

    Google Scholar 

  62. Zidanšek, A. Sustainable development and happiness in nations. Energy 32, 891–897 (2007).

    Google Scholar 

  63. York, R., Rosa, E. & Dietz, T. The ecological footprint intensity of national economies. J. Ind. Ecol. 8, 139–154 (2005).

    Google Scholar 

  64. Venhoeven, L. A., Bolderdijk, J. W. & Steg, L. Why acting environmentally-friendly feels good: exploring the role of self-image. Front. Psychol. 7, 1846 (2016).

    Google Scholar 

  65. Brown, K. W. & Kasser, T. Are psychological and ecological well-being compatible? The role of values, mindfulness, and lifestyle. Soc. Indic. Res. 74, 349–368 (2005).

    Google Scholar 

  66. Lambert, L. et al. Towards a greater global understanding of wellbeing: a proposal for a more inclusive measure. Int. J. Wellbeing 10, 1–18 (2020).

    Google Scholar 

  67. Barger, S. D., Donoho, C. J. & Wayment, H. A. The relative contributions of race/ethnicity, socioeconomic status, health, and social relationships to life satisfaction in the United States. Qual. Life Res. 18, 179–189 (2009).

    Google Scholar 

  68. Wachs, M. Transportation policy, poverty, and sustainability: history and future. Transp. Res. Rec. 2163, 5–12 (2010).

    Google Scholar 

  69. Douglas, I. Urban ecology and urban ecosystems: understanding the links to human health and well-being. Curr. Opin. Environ. Sustain. 4, 385–392 (2012).

    Google Scholar 

  70. Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 12 (2018).

    Google Scholar 

  71. Rao, N., Kiesewetter, G., Min, J., Pachauri, S. & Wagner, F. Household contributions to and impacts from air pollution in India. Nat. Sustain. https://doi.org/10.1038/s41893-021-00744-0 (2021).

  72. Stillman, T. F., Fincham, F. D., Vohs, K. D., Lambert, N. M. & Phillips, C. A. The material and immaterial in conflict: spirituality reduces conspicuous consumption. J. Econ. Psychol. 33, 1–7 (2012).

    Google Scholar 

  73. Ruggles, S. Big microdata for population research. Demography 51, 287–297 (2014).

    Google Scholar 

  74. Zhang, W. et al. Estimating residential energy consumption in metropolitan areas: a microsimulation approach. Energy 155, 162–173 (2018).

    Google Scholar 

  75. Kallis, G. In defence of degrowth. Ecol. Econ. 70, 873–880 (2011).

    Google Scholar 

  76. Hickel, J. What does degrowth mean? A few points of clarification. Globalizations https://doi.org/10.1080/14747731.2020.1812222 (2020).

  77. Keysser, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    CAS  Google Scholar 

  78. Knutti, R. Closing the knowledge–action gap in climate change. One Earth 1, 21–23 (2019).

    Google Scholar 

Download references

Acknowledgements

C.W. was supported by UK ESRC grant ES/S012257/1 (CAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimha D. Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Enrica De Cian, Manfred Lenzen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, N.D., Wilson, C. Advancing energy and well-being research. Nat Sustain 5, 98–103 (2022). https://doi.org/10.1038/s41893-021-00775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00775-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing