Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A seaweed aquaculture imperative to meet global sustainability targets

Abstract

Seaweed aquaculture accounts for 51.3% of global mariculture production and grows at 6.2% yr−1 (2000–2018). It delivers a broad range of ecosystem services, providing a source of food and natural products across a range of industries. It also offers a versatile, nature-based solution for climate change mitigation and adaptation and for counteracting eutrophication and biodiversity crisis. Here we offer the perspective that scaling up seaweed aquaculture as an emission capture and utilization technology, one supporting a circular bioeconomy, is an imperative to accommodate more than 9 billion people in 2050 while advancing across many of the United Nations Sustainable Development Goals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Seaweed production.
Fig. 2: Projected seaweed yield.
Fig. 3: Seaweed production and utilization contributes to advancing a number of UN SDGs, which provide integrative benefits contributing to additional SDGs.
Fig. 4: Resource flow for different scenarios.

References

  1. Duarte, C. M. et al. Will the oceans help feed humanity? Bioscience 59, 967–976 (2009).

    Google Scholar 

  2. Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).

    Google Scholar 

  3. Lee, H. et al. Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food system transformation. Environ. Res. Lett. 14, 104009 (2019).

    CAS  Google Scholar 

  4. Rebours, C. et al. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J. Appl. Phycol. 26, 1939–1951 (2014).

    CAS  Google Scholar 

  5. Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00100 (2017).

  6. Duarte, C. M., Marbà, N. & Holmer, M. Rapid domestication of marine species. Science 316, 382–383 (2007).

    CAS  Google Scholar 

  7. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS  Google Scholar 

  8. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020); https://doi.org/10.4060/ca9229en

  9. Xiao, X. et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613 (2017).

    Google Scholar 

  10. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Google Scholar 

  11. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    CAS  Google Scholar 

  12. Kambey, C. S. B. et al. An analysis of the current status and future of biosecurity frameworks for the Indonesian seaweed industry. J. Appl. Phycol. 32, 2147–2160 (2020).

    Google Scholar 

  13. Matsumura, Y. Nutrition trends in Japan. Asia Pac. J. Clin. Nutr. 10, S40–S47 (2001).

    Google Scholar 

  14. Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 29, 3087–3093 (2019).

    CAS  Google Scholar 

  15. Mata, L., Magnusson, M., Paul, N. A. & de Nys, R. The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J. Appl. Phycol. 28, 365–375 (2016).

    CAS  Google Scholar 

  16. Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    CAS  Google Scholar 

  17. Le Gouvello, R. et al. Aquaculture and Marine Protected Areas: potential opportunities and synergies. Aquat. Conserv. 27, 138–150 (2017).

    Google Scholar 

  18. Mazarrasa, I., Olsen, Y. S., Mayol, E., Marbà, N. & Duarte, C. M. Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nat. Biotechnol. 31, 591–592 (2013).

    CAS  Google Scholar 

  19. Holdt, S. L. & Kraan, S. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23, 543–597 (2011).

    CAS  Google Scholar 

  20. Birch, D., Skallerud, K. & Paul, N. A. Who are the future seaweed consumers in a Western society? Insights from Australia. Br. Food J. 121, 603–615 (2019).

    Google Scholar 

  21. Wan, A. H. L., Davies, S. J., Soler-Vila, A., Fitzgerald, R. & Johnson, M. P. Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac. 11, 458–492 (2019).

    Google Scholar 

  22. Makkar, H. P. S. et al. Seaweeds for livestock diets: a review. Anim. Feed Sci. Technol. 212, 1–17 (2016).

    CAS  Google Scholar 

  23. Kinley, R. D. et al. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 259, 120836 (2020).

    Google Scholar 

  24. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03 (Food and Agriculture Organization of the United Nations, 2012).

  25. Nabti, E., Jha, B. & Hartmann, A. Impact of seaweeds on agricultural crop production as biofertilizer. Int. J. Environ. Sci. Technol. 14, 1119–1134 (2017).

    CAS  Google Scholar 

  26. Guedes, A. C., Amaro, H. M., Sousa-Pinto, I. & Malcata, F. X. in Biofuels from Algae (eds Pandey, A. et al.) 397–433 (Elsevier, 2019).

  27. Thomsen, M. & Zhang, X. in Sustainable Seaweed Technologies (eds Torres, M. D. et al.) 663–707 (Elsevier, 2020).

  28. Farrelly, D. J., Everard, C. D., Fagan, C. C. & McDonnell, K. P. Carbon sequestration and the role of biological carbon mitigation: a review. Renew. Sustain. Energy Rev. 21, 712–727 (2013).

    CAS  Google Scholar 

  29. Melara, A. J., Singh, U. & Colosi, L. M. Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment. Energy Convers. Manag. 224, 113300 (2020).

    CAS  Google Scholar 

  30. Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

    Google Scholar 

  31. Sadhukhan, J. et al. Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chem. 21, 2635–2655 (2019).

    CAS  Google Scholar 

  32. Raikova, S., Le, C. D., Wagner, J. L., Ting, V. P. & Chuck, C. J. in Biofuels for Aviation (ed. Chuck, C. J.) 217–239 (Academic, 2016).

  33. Zou, D. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250, 726–735 (2005).

    CAS  Google Scholar 

  34. Xiao, X. et al. Seaweed farms provide refugia from ocean acidification. Sci. Total Environ. 776, 145192 (2021).

    CAS  Google Scholar 

  35. Jiang, Z., Fang, J., Mao, Y., Han, T. & Wang, G. Influence of seaweed aquaculture on marine inorganic carbon dynamics and sea–air CO2 flux. J. World Aquac. Soc. 44, 133–140 (2013).

    Google Scholar 

  36. Zhang, J. et al. Growth and loss of mariculture kelp Saccharina japonica in Sungo Bay, China. J. Appl. Phycol. 24, 1209–1216 (2012).

    CAS  Google Scholar 

  37. Raven, J. A. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. Eur. J. Phycol. 52, 506–522 (2017).

    CAS  Google Scholar 

  38. Lim, Y. K., Phang, S. M., Abdul Rahman, N., Sturges, W. T. & Malin, G. Halocarbon emissions from marine phytoplankton and climate change. Int. J. Environ. Sci. Technol. 14, 1355–1370 (2017).

    CAS  Google Scholar 

  39. Ziska, F., Quack, B., Tegtmeier, S., Stemmler, I. & Krüger, K. Future emissions of marine halogenated very-short lived substances under climate change. J. Atmos. Chem. 74, 245–260 (2017).

    CAS  Google Scholar 

  40. Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).

    Google Scholar 

  41. Theuerkauf, S. J. et al. Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: pathways, synthesis and next steps. Rev. Aquac. https://doi.org/10.1111/raq.12584 (2021).

  42. Nixon, S. W. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41, 199–219 (1995).

    Google Scholar 

  43. Neveux, N., Bolton, J. J., Bruhn, A., Roberts, D. A. & Ras, M. in Blue Biotechnology: Production and Use of Marine Molecules (eds La Barre, S. & Bates, S. S.) 217–241 (Wiley, 2018).

  44. Neori, A. et al. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231, 361–391 (2004).

    Google Scholar 

  45. Kelly, E. L. A., Cannon, A. L. & Smith, J. E. Environmental impacts and implications of tropical carrageenophyte seaweed farming. Conserv. Biol. 34, 326–337 (2020).

    Google Scholar 

  46. Campbell, I. et al. The environmental risks associated with the development of seaweed farming in Europe - prioritizing key knowledge gaps. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00107 (2019).

  47. Unsworth, R. K. F. et al. Indonesia’s globally significant seagrass meadows are under widespread threat. Sci. Total Environ. 634, 279–286 (2018).

    CAS  Google Scholar 

  48. Williams, S. L. & Smith, J. E. A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu. Rev. Ecol. Evol. Syst. 38, 327–359 (2007).

    Google Scholar 

  49. Ye, N.-h. et al. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol. Res. 26, 477 (2011).

    Google Scholar 

  50. Liu, D., Keesing, J. K., Xing, Q. & Shi, P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 58, 888–895 (2009).

    CAS  Google Scholar 

  51. Pang, S. J. et al. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar. Environ. Res. 69, 207–215 (2010).

    CAS  Google Scholar 

  52. Hu, C. et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Oceans https://doi.org/10.1029/2009JC005561 (2010).

  53. Duan, W. et al. Morphological and molecular characterization of free-floating and attached green macroalgae Ulva spp. in the Yellow Sea of China. J. Appl. Phycol. 24, 97–108 (2012).

    Google Scholar 

  54. Xing, Q. et al. Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for managing the disaster of macroalgal blooms. Remote Sens. Environ. 231, 111279 (2019).

    Google Scholar 

  55. Nelson, E. et al. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 5, e14327 (2010).

    CAS  Google Scholar 

  56. Hooke, R. L., Martín Duque, J. F. & Pedraza Gilsanz, J. D. Land transformation by humans: a review. GSA Today 22, 4–10 (2012).

    Google Scholar 

  57. Robledo, D., Gasca-Leyva, E. & Fraga, J. Social and Economic Dimensions of Carrageenan Seaweed Farming in Mexico Fisheries and Aquaculture Technical Paper No. 580 (FAO, 2013).

  58. Larson, S. et al. Women’s well-being and household benefits from seaweed farming in Indonesia. Aquaculture 530, 735711 (2021).

    Google Scholar 

  59. Verbeke, W., Sioen, I., Brunsø, K., De Henauw, S. & Van Camp, J. Consumer perception versus scientific evidence of farmed and wild fish: exploratory insights from Belgium. Aquac. Int. 15, 121–136 (2007).

    Google Scholar 

  60. Holmer, M., Black, K., Duarte, C. M., Marbà, N. & Karakassis, I. Aquaculture in the Ecosystem (Springer, 2007).

  61. Kaiser, M. & Stead, S. M. Uncertainties and values in European aquaculture: communication, management and policy issues in times of ‘changing public perceptions’. Aquac. Int. 10, 469–490 (2002).

    Google Scholar 

  62. Gimpel, A. et al. A GIS modelling framework to evaluate marine spatial planning scenarios: co-location of offshore wind farms and aquaculture in the German EEZ. Mar. Policy 55, 102–115 (2015).

    Google Scholar 

  63. Barbier, M. et al. Development and objectives of the PHYCOMORPH European Guidelines for the Sustainable Aquaculture of Seaweeds (PEGASUS). Bot. Mar. 63, 5–16 (2020).

    Google Scholar 

  64. Cottier-Cook, E. et al. Safeguarding the Future of the Global Seaweed Aquaculture Industry (United Nations University, Institute for Water, Environment and Health, UNU-INWEH & Scottish Association for Marine Science, 2016).

  65. Cabral, P. et al. Ecosystem services assessment and compensation costs for installing seaweed farms. Mar. Policy 71, 157–165 (2016).

    Google Scholar 

  66. Fernand, F. et al. Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew. Sustain. Energy Rev. 75, 35–45 (2017).

    CAS  Google Scholar 

  67. Jumaidin, R., Sapuan, S., Jawaid, M., Ishak, M. R. & Sahari, J. Seaweeds as renewable sources for biopolymers and its composites: a review. Curr. Anal. Chem. 14, 249–267 (2018).

    CAS  Google Scholar 

  68. Lim, J.-Y., Hii, S.-L., Chee, S.-Y. & Wong, C.-L. Sargassum siliquosum J. Agardh extract as potential material for synthesis of bioplastic film. J. Appl. Phycol. 30, 3285–3297 (2018).

    CAS  Google Scholar 

  69. Torres, M., Kraan, S. & Domínguez, H. Seaweed biorefinery. Rev. Environ. Sci. Biotechnol. 18, 335–388 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by King Abdullah University of Science and Technology through baseline funding to C.M.D. A.B. was supported by the Danish Center for Environment and Energy (DCE), the Velux Foundations (Tang.nu, contract no. 13744) and the Innovation Fund Denmark (ClimateFeed). D.K.-J. was funded by DCE and by EU H2020 (FutureMARES, contract no. 869300). We thank T. Christensen, Aarhus University, for producing the manuscript figures.

Author information

Authors and Affiliations

Authors

Contributions

C.M.D. and D.K.-J. conceived this research, and all three authors wrote the first draft, improved the text and approved the submission.

Corresponding author

Correspondence to Carlos M. Duarte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Sustainability thanks John Beardall, Muta Zakaria and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duarte, C.M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat Sustain 5, 185–193 (2022). https://doi.org/10.1038/s41893-021-00773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00773-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing