Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High rates of short-term dynamics of forest ecosystem services

Abstract

Currently, the main tools for assessing and managing ecosystem services at large scales are maps providing snapshots of their potential supply. However, many ecosystems change over short timescales; thus, such maps soon become inaccurate. Here we show high rates of short-term dynamics of three key forest ecosystem services: wood production, bilberry production and topsoil carbon storage. Almost 85% of the coldspots and 65% of the hotspots for these services had changed into a different state over a ten-year period. Wood production showed higher rates of short-term dynamics than bilberry production and carbon storage. The high rates of dynamics mean that static snapshot ecosystem service maps provide limited information for assessing and managing multifunctional, dynamic landscapes, such as forests. We advocate that dynamic, spatially explicit tools to assess and manage ecosystem service dynamics be further developed and applied in post-2020 biodiversity and ecosystem service policy supporting frameworks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Rates of short-term dynamics of single forest ES shown as probabilities of sites changing between categories over a ten-year period.
Fig. 2: Rates of short-term dynamics of single forest ES for different forest age classes.
Fig. 3: Changes in single ES and hot- and coldspots through forest succession.
Fig. 4: Joint short-term dynamics of combined ES quantified as the probabilities of sites changing to another category over a ten-year period.

Data availability

The data used for this study are archived and openly available from the University of Jyväskylä Dataverse Network (http://dvn.jyu.fi/dvn/dv/Boreal_forest).

Code availability

The code used to analyse the data and produce the figures is available from the corresponding author upon request.

References

  1. 1.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS  Google Scholar 

  2. 2.

    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).

    CAS  Google Scholar 

  3. 3.

    Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).

    Google Scholar 

  4. 4.

    Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).

    Google Scholar 

  5. 5.

    Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).

    Google Scholar 

  6. 6.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).

  7. 7.

    Summary for Policymakers. In Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  8. 8.

    Martínez-Harms, M. J. & Balvanera, P. Methods for mapping ecosystem service supply: a review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 8, 17–25 (2012).

    Google Scholar 

  9. 9.

    Hauck, J. et al. ‘Maps have an air of authority’: potential benefits and challenges of ecosystem service maps at different levels of decision making. Ecosyst. Serv. 4, 25–32 (2013).

    Google Scholar 

  10. 10.

    Balvanera, P. et al. Conserving biodiversity and ecosystem services. Science 291, 2047 (2001).

    CAS  Google Scholar 

  11. 11.

    Dick, J., Maes, J., Smith, R. I., Paracchini, M. L. & Zulian, G. Cross-scale analysis of ecosystem services identified and assessed at local and European level. Ecol. Indic. 38, 20–30 (2014).

    Google Scholar 

  12. 12.

    UK National Ecosystem Assessment. The UK National Ecosystem Assessment Technical Report. (UNEP-WCMC, 2011); http://uknea.unep-wcmc.org/

  13. 13.

    Orsi, F., Ciolli, M., Primmer, E., Varumo, L. & Geneletti, D. Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy 99, 104840 (2020).

    Google Scholar 

  14. 14.

    Holland, R. A. et al. The influence of temporal variation on relationships between ecosystem services. Biodivers. Conserv. 20, 3285–3294 (2011).

    Google Scholar 

  15. 15.

    Renard, D., Rhemtull, J. M. & Bennett, E. M. Historical dynamics in ecosystem service bundles. Proc. Natl Acad. Sci. USA 112, 13411–13416 (2015).

    CAS  Google Scholar 

  16. 16.

    Rukundo, E. et al. Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 89, 696–705 (2018).

    Google Scholar 

  17. 17.

    Stürck, J., Schulp, C. J. E. & Verburg, P. H. Spatio-temporal dynamics of regulating ecosystem services in Europe—the role of past and future land use change. Appl. Geogr. 63, 121–135 (2015).

    Google Scholar 

  18. 18.

    Rau, A. L. et al. Temporal patterns in ecosystem services research: a review and three recommendations. Ambio 49, 1377–1393 (2020).

    Google Scholar 

  19. 19.

    Sutherland, I. J., Bennett, E. M. & Gergel, S. E. Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. For. Ecol. Manage. 374, 61–70 (2016).

    Google Scholar 

  20. 20.

    Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).

    CAS  Google Scholar 

  21. 21.

    Vanhanen, H. et al. Making Boreal Forests Work for People and Nature (IUFRO, 2012).

  22. 22.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  23. 23.

    Moen, J. et al. Eye on the Taiga: removing global policy impediments to safeguard the boreal forest. Conserv. Lett. 7, 408–418 (2014).

    Google Scholar 

  24. 24.

    Global Forest Industry (Swedish Forest Industries, 2019); https://www.forestindustries.se/forest-industry/statistics/global-forest-industry/

  25. 25.

    Saastamoinen, O., Kangas, K. & Aho, H. The picking of wild berries in Finland in 1997 and 1998. Scand. J. For. Res. 15, 645–650 (2000).

    Google Scholar 

  26. 26.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    Google Scholar 

  27. 27.

    Hou, Y., Li, B., Müller, F., Fu, Q. & Chen, W. A conservation decision-making framework based on ecosystem service hotspot and interaction analyses on multiple scales. Sci. Total Environ. 643, 277–291 (2018).

    CAS  Google Scholar 

  28. 28.

    Blumstein, M. & Thompson, J. R. Land-use impacts on the quantity and configuration of ecosystem service provisioning in Massachusetts, USA. J. Appl. Ecol. 52, 1009–1019 (2015).

    Google Scholar 

  29. 29.

    Fernandez-Campo, M., Rodríguez-Morales, B., Dramstad, W. E., Fjellstad, W. & Diaz-Varela, E. R. Ecosystem services mapping for detection of bundles, synergies and trade-offs: examples from two Norwegian municipalities. Ecosyst. Serv. 28, 283–297 (2017).

    Google Scholar 

  30. 30.

    Gissi, E., Fraschetti, S. & Micheli, F. Incorporating change in marine spatial planning: a review. Environ. Sci. Policy 92, 191–200 (2019).

    Google Scholar 

  31. 31.

    Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).

    CAS  Google Scholar 

  32. 32.

    Willcock, S. et al. Do ecosystem service maps and models meet stakeholders’ needs? A preliminary survey across sub-Saharan Africa. Ecosyst. Serv. 18, 110–117 (2016).

    Google Scholar 

  33. 33.

    Jonsson, M., Bengtsson, J., Gamfeldt, L., Moen, J. & Snäll, T. Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Nat. Plants 5, 141–147 (2019).

    Google Scholar 

  34. 34.

    Pohjanmies, T. et al. Impacts of forestry on boreal forests: an ecosystem services perspective. Ambio 46, 743–755 (2017).

    Google Scholar 

  35. 35.

    Miina, J., Hotanen, J.-P. & Salo, K. Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in Finnish mineral soil forests. Silva Fenn. 43, 577–593 (2009).

    Google Scholar 

  36. 36.

    Hertel, A. G. et al. Berry production drives bottom–up effects on body mass and reproductive success in an omnivore. Oikos 127, 197–207 (2018).

    Google Scholar 

  37. 37.

    Thiffault, E. Boreal forests and soils. Dev. Soil Sci. 36, 59–82 (2019).

    Google Scholar 

  38. 38.

    Jonsson, M., Bengtsson, J., Moen, J., Gamfeldt, L. & Snäll, T. Stand age and climate influence forest ecosystem service delivery and multifunctionality. Environ. Res. Lett. 15, 0940a8 (2020).

    Google Scholar 

  39. 39.

    Stokland, J. N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands. For. Ecol. Manage. 488, 119017 (2021).

    Google Scholar 

  40. 40.

    Harmon, M. E., Ferrell, W. K. & Franklin, J. F. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247, 699–702 (1990).

    CAS  Google Scholar 

  41. 41.

    Mazziotta, A. et al. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest. Glob. Change Biol. 21, 637–651 (2015).

    Google Scholar 

  42. 42.

    Triviño, M. et al. Optimizing management to enhance multifunctionality in a boreal forest landscape. J. Appl. Ecol. 54, 61–70 (2017).

    Google Scholar 

  43. 43.

    Qiu, J. & Turner, M. G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl Acad. Sci. USA 110, 12149–12154 (2013).

    CAS  Google Scholar 

  44. 44.

    Felipe-Lucia, M. R. et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 9, 4839 (2018).

    Google Scholar 

  45. 45.

    Eggers, J., Räty, M., Öhman, K. & Snäll, T. How well do stakeholder-defined forest management scenarios balance economic and ecological forest values? Forests 11, 86 (2020).

    Google Scholar 

  46. 46.

    Eyvindson, K., Repo, A. & Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. For. Policy Econ. 92, 119–127 (2018).

    Google Scholar 

  47. 47.

    Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).

    Google Scholar 

  48. 48.

    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).

    Google Scholar 

  49. 49.

    Hufnagel, J., Reckling, M. & Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 40, 14 (2020).

    Google Scholar 

  50. 50.

    Guerry, A. D. et al. Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 8, 107–121 (2012).

    Google Scholar 

  51. 51.

    Wikström, P. et al. The Heureka Forestry Decision Support System: An Overview. Math. Comput. For Nat.-Resour. Sci. 3, 87–94 (2011).

    Google Scholar 

  52. 52.

    Forest Statistics (Swedish University of Agricultural Sciences, 2020).

  53. 53.

    Eriksson, A., Snäll, T. & Harrison, P. J. Analys av miljöförhållanden ‐ SKA 15. Report 11 (Swedish Forest Agency, 2015).

  54. 54.

    Axelsson, A.-L. et al. in National Forest Inventories—Pathways for Common Reporting (eds Tomppo, E. et al.) 541–553 (Springer, 2010).

  55. 55.

    Marklund, L. G. Biomass Functions for Pine, Spruce and Birch in Sweden (1988).

  56. 56.

    Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 24–83 (2006).

    Google Scholar 

  57. 57.

    Miina, J., Pukkala, T. & Kurttila, M. Optimal multi-product management of stands producing timber and wild berries. Eur. J. For. Res. 135, 781–794 (2016).

    Google Scholar 

  58. 58.

    Schröter, M. & Remme, R. P. Spatial prioritisation for conserving ecosystem services: comparing hotspots with heuristic optimisation. Landsc. Ecol. 31, 431–450 (2016).

    Google Scholar 

  59. 59.

    Wu, J., Feng, Z., Gao, Y. & Peng, J. Hotspot and relationship identification in multiple landscape services: a case study on an area with intensive human activities. Ecol. Indic. 29, 529–537 (2013).

    CAS  Google Scholar 

  60. 60.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Google Scholar 

  61. 61.

    R: A Language and Environment for Statistical Computing (R Development Core Team, 2014); https://www.R-project.org/

Download references

Acknowledgements

The study originated in a pilot MAES project (Mapping and Assessment of Ecosystems and their Services) funded by the Swedish Environmental Protection Agency to T.S., J.B. and J.M. The grant also funded L.M. The study was also supported by the ERA-Net Sumforest project FutureBioEcon/Formas 2016–2109 (coordinated by T.S.). M.T. was supported by the Kone Foundation and by the FutureBioEcon project and further thanks members of the BERG group (http://www.jyu.fi/berg) for useful discussion, especially M. Potterf and R. Duflot.

Author information

Affiliations

Authors

Contributions

T.S. conceived and obtained financial support for the study and discussed the design with J.B., J.M. and L.M.; M.T., L.M. and T.S. analysed the data; M.T. designed and produced the figures with the input of all authors; T.S. and M.T. wrote the first draft of the manuscript. All authors interpreted the results and provided input on the manuscript.

Corresponding authors

Correspondence to Tord Snäll or María Triviño.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks James Bullock, María Felipe-Lucia, Annika Kangas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–17, Results 1–3 and Figs. 1–5.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Snäll, T., Triviño, M., Mair, L. et al. High rates of short-term dynamics of forest ecosystem services. Nat Sustain (2021). https://doi.org/10.1038/s41893-021-00764-w

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing