Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


The challenges of electrolytic valorization of carbon dioxide

Electroreduction of carbon dioxide is an enabling technology that can produce valuable chemicals, notably C1 (for example, formic acid and carbon monoxide) and C2 chemicals (for example, ethylene and ethanol), with a minimal or even negative carbon footprint. Now, a techno-economic analysis shows that only the C1 products can achieve competitive prices, while substantial improvements in process economics are needed for C2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Price–demand curve for commodity chemicals.


  1. 1.

    Peters, M. S., Timmerhaus, K. D. & West, R. E. Plant Design and Economics for Chemical Engineers 254–256 (McGraw Hill, 2003).

  2. 2.

    Patience, G. S. & Boffito, D. C. J. Adv. Manuf. Process. 2, e10039 (2020).

    Article  Google Scholar 

  3. 3.

    Weber, R. S., Askander, J. A. & Barclay, J. A. J. Adv. Manuf. Process. 3, e10074 (2020).

    Google Scholar 

  4. 4.

    Shin, H., Hansen, K. U. & Jiao, F. Nat. Sustain. (2021).

    Article  Google Scholar 

  5. 5.

    Nitopi, S. et al. Chem. Rev. 119, 7610–7672 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Grim, R. G. et al. Energy Environ. Sci. 13, 472–494 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    Jouny, M., Luc, W. & Jiao, F. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Jouny, M., Luc, W. & Jiao, F. Ind. Eng. Chem. Res. 59, 8121–8123 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    Weber, R. S. ACS Catal. 9, 946–950 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Bushuyev, O. S. et al. Joule 2, 825–832 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Petroleum & Other Liquids (US Energy Information Agency, 2021);

  12. 12.

    Holladay, J. E., Male, J. L., Rousseau, R. & Weber, R. S. Energy Fuels 34, 15433–15442 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    Renewable Capacity Statistics 2020 (International Renewable Energy Agency, 2020);

  14. 14.

    GDP (Current US$) (World Bank, 2021);

  15. 15.

    Andrews, E. M., Egbert, J. D., Sanyal, U., Holladay, J. D. & Weber, R. S. Energy Fuels 34, 1162–1165 (2020).

    CAS  Article  Google Scholar 

  16. 16.

    Chemical Economics Handbook (IHS Chemicals, 2019).

Download references


This work was supported by the US Department of Energy (DOE), Office of Technology Transitions and the DOE, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office. PNNL is a multiprogram national laboratory operated for the US Department of Energy by Battelle under contract DE-AC05-76RL01830.

Author information



Corresponding author

Correspondence to Robert S. Weber.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weber, R.S. The challenges of electrolytic valorization of carbon dioxide. Nat Sustain (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing