Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Life cycle assessment of recycling strategies for perovskite photovoltaic modules


Effective recycling of spent perovskite solar modules will further reduce the energy requirements and environmental consequences of their production and deployment, thus facilitating their sustainable development. Here, through ‘cradle-to-grave’ life cycle assessments of a variety of perovskite solar cell architectures, we report that substrates with conducting oxides and energy-intensive heating processes are the largest contributors to primary energy consumption, global warming potential and other types of impact. We therefore focus on these materials and processes when expanding to ‘cradle-to-cradle’ analyses with recycling as the end-of-life scenario. Our results reveal that recycling strategies can lead to a decrease of up to 72.6% in energy payback time and a reduction of 71.2% in greenhouse gas emission factor. The best recycled module architecture can exhibit an extremely small energy payback time of 0.09 years and a greenhouse gas emission factor as low as 13.4 g CO2 equivalent per kWh; it therefore outcompetes all other rivals, including the market-leading silicon at 1.3–2.4 years and 22.1–38.1 g CO2 equivalent per kWh. Finally, we use sensitivity analyses to highlight the importance of prolonging device lifetime and to quantify the effects of uncertainty induced by the still immature manufacturing processes, changing operating conditions and individual differences for each module.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of a perovskite solar cell architecture on a glass substrate.
Fig. 2: The system boundary of manufacturing LBSO perovskite solar modules with landfill as the end-of-life scenario.
Fig. 3: Comparison of primary energy consumption between landfill and recycling scenarios for the six investigated PSC architectures.
Fig. 4: Comparison of global warming potential between landfill and recycling scenarios for the six investigated PSC architectures.
Fig. 5: Comparison of EPBT and GHG emission factors among 13 PV modules based on different technologies.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The LCA modelling file with all data inputs, results, methodological notes, figures, discussion of uncertainties and sources is available on GitHub ( Additional data are available from the authors upon request.


  1. 1.

    Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Best Research-Cell Efficiency Chart (NREL Transforming Energy, 2020);

  3. 3.

    Berry, J. J. et al. Perovskite photovoltaics: the path to a printable terawatt-scale technology. ACS Energy Lett. 2, 2540–2544 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Bonnet, D. The CdTe thin film solar cell - an overview. Int. J. Sol. Energy 12, 1–14 (1992).

    Article  Google Scholar 

  5. 5.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Kim, B. J. et al. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nat. Commun. 7, 11735 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Kadro, J. M. & Hagfeldt, A. The end-of-life of perovskite PV. Joule 1, 29–46 (2017).

    Article  Google Scholar 

  10. 10.

    Alberola-Borràs, J.-A. et al. Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process. iScience 9, 542–551 (2018).

    Article  CAS  Google Scholar 

  11. 11.

    Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Kim, Y. C. et al. Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy Environ. Sci. 10, 2109–2116 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Yang, S., Fu, W., Zhang, Z., Chen, H. & Li, C.-Z. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462–11482 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Islam, M. B., Yanagida, M., Shirai, Y., Nabetani, Y. & Miyano, K. Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h. Sol. Energy Mater. Sol. Cells 195, 323–329 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  19. 19.

    Dang, M. T., Lefebvre, J. & Wuest, J. D. Recycling indium tin oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides. ACS Sustain. Chem. Eng. 3, 3373–3381 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Kadro, J. M. et al. Proof-of-concept for facile perovskite solar cell recycling. Energy Environ. Sci. 9, 3172–3179 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Rebitzer, G. et al. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30, 701–720 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    Pennington, D. et al. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 30, 721–739 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    Goetz, K. P., Taylor, A. D., Hofstetter, Y. J. & Vaynzof, Y. Sustainability in perovskite solar cells. ACS Appl. Mater. Interfaces 13, 1–17 (2021).

    CAS  Article  Google Scholar 

  24. 24.

    Conings, B., Babayigit, A. & Boyen, H.-G. Fire safety of lead halide perovskite photovoltaics. ACS Energy Lett. 4, 873–878 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Espinosa, N., Serrano-Luján, L., Urbina, A. & Krebs, F. C. Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303–310 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Goedkoop, M. et al. ReCiPe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level: Report 1: Characterisation (Ministry of Housing, Spatial Planning and Environment (VROM), 2009).

  27. 27.

    Mudd, G. M. Global trends in gold mining: towards quantifying environmental and resource sustainability. Resour. Policy 32, 42–56 (2007).

    Article  Google Scholar 

  28. 28.

    Maranghi, S., Parisi, M. L., Basosi, R. & Sinicropi, A. Environmental profile of the manufacturing process of perovskite photovoltaics: harmonization of life cycle assessment studies. Energies 12, 3746 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Alsema, E. & de Wild, M. J. Environmental impact of crystalline silicon photovoltaic module production. MRS Proc. 895, 73–78 (2006).

    CAS  Google Scholar 

  30. 30.

    Raugei, M., Bargigli, S. & Ulgiati, S. Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy 32, 1310–1318 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Alsema, E., de Wild-Scholten, M. & Fthenakis, V. Environmental impacts of PV electricity generation-a critical comparison of energy supply options. In 21st European Photovoltaic Solar Energy Conference: Proceedings of the International Conference Held in Dresden, Germany, 48 September 2006 3201–3207 (WIP Renewable Energies, 2006).

  32. 32.

    Fthenakis, V. M. Life cycle impact analysis of cadmium in CdTe PV production. Renew. Sust. Energ. Rev. 8, 303–334 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    Fthenakis, V. et al. Emissions and encapsulation of cadmium in CdTe PV modules during fires. Prog. Photovolt. Res. Appl. 13, 713–723 (2005).

    CAS  Article  Google Scholar 

  34. 34.

    Darling, S. B. & You, F. The case for organic photovoltaics. RSC Adv. 3, 17633–17648 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Matteocci, F. et al. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Prog. Photovolt. Res. Appl. 24, 436–445 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Xu, Y., Li, J., Tan, Q., Peters, A. L. & Yang, C. Global status of recycling waste solar panels: a review. Waste Manag. 75, 450–458 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Yue, D., Khatav, P., You, F. & Darling, S. B. Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy Environ. Sci. 5, 9163–9172 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Espinosa, N., Hösel, M., Angmo, D. & Krebs, F. C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 5, 5117–5132 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Goe, M. & Gaustad, G. Strengthening the case for recycling photovoltaics: An energy payback analysis. Appl. Energy 120, 41–48 (2014).

    Article  Google Scholar 

  41. 41.

    Espinosa, N., García-Valverde, R. & Krebs, F. C. Life-cycle analysis of product integrated polymer solar cells. Energy Environ. Sci. 4, 1547–1557 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    García-Valverde, R., Cherni, J. A. & Urbina, A. Life cycle analysis of organic photovoltaic technologies. Prog. Photovolt. Res. Appl. 18, 535–558 (2010).

    Article  CAS  Google Scholar 

  43. 43.

    Siefert, W. Corona spray pyrolysis: a new coating technique with an extremely enhanced deposition efficiency. Thin Solid Films 120, 267–274 (1984).

    CAS  Article  Google Scholar 

  44. 44.

    Frischknecht, R. LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int. J. Life Cycle Assess. 15, 666–671 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    IPCC Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  46. 46.

    Goedkoop, M. The Eco-indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment (PRé Consultants, 2000).

  47. 47.

    Fthenakis, V. M., Kim, H. C. & Alsema, E. Emissions from photovoltaic life cycles. Environ. Sci. Technol. 42, 2168–2174 (2008).

    CAS  Article  Google Scholar 

  48. 48.

    Darling, S. B., You, F., Veselka, T. & Velosa, A. Assumptions and the levelized cost of energy for photovoltaics. Energy Environ. Sci. 4, 3133–3139 (2011).

    Article  Google Scholar 

  49. 49.

    Goodrich, A., James, T. & Woodhouse, M. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities (NREL, 2012).

  50. 50.

    Sofia, S. E. et al. Economic viability of thin-film tandem solar modules in the United States. Nat. Energy 3, 387–394 (2018).

    Article  Google Scholar 

  51. 51.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Article  CAS  Google Scholar 

Download references


This work was supported in part by a National Science Foundation (NSF) CAREER award (CBET-1643244). S.D.S. acknowledges support from the Royal Society and Tata Group (UF150033).

Author information




F.Y. conceived the research; X.T. developed the models and conducted the simulations; X.T. and F.Y. analysed the results; X.T., S.D.S. and F.Y. wrote the manuscript. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Fengqi You.

Ethics declarations

Competing interests

S.D.S. is a co-founder of Swift Solar. All other authors have no competing interests.

Additional information

Peer review information Nature Sustainability thanks Adalgisa Sinicropi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Environmental profile of a 1 m2 LBSO module.

Detailed breakdowns of 18 midpoint impact categories according to the ReCiPe method for LBSO module.

Extended Data Fig. 2 Environmental profile of a 1 m2 defect-engineered module.

Detailed breakdowns of 18 midpoint impact categories according to the ReCiPe method for defect-engineered module.

Extended Data Fig. 3 Comparative LCIA results among the six investigated modules.

Normalized LCIA results with LBSO module defined as the base case for normalization.

Extended Data Fig. 4 Uncertainty analysis for the LBSO module in terms of EPBT and GHG emission factor.

Probability and frequency statistics for EPBT and GHG emission factor based on Monte Carlo simulations.

Extended Data Fig. 5 Sensitivity analysis for the LBSO module in terms of EPBT and GHG emission factor.

Sensitivity analysis for EPBT and GHG emission factor based on Monte Carlo simulations.

Extended Data Fig. 6 Sensitivity analysis for recycling the LBSO module in terms of primary energy consumption and global warming potential.

Tornado charts of the sensitivity analysis results for producing recycled LBSO module.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45, Discussion, Tables 1–46 and references 1–34.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Stranks, S.D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat Sustain 4, 821–829 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing