Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Massive soybean expansion in South America since 2000 and implications for conservation

Abstract

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data. From 2000 to 2019, the area cultivated with soybean more than doubled from 26.4 Mha to 55.1 Mha. Most soybean expansion occurred on pastures originally converted from natural vegetation for cattle production. The most rapid expansion occurred in the Brazilian Amazon, where soybean area increased more than tenfold, from 0.4 Mha to 4.6 Mha. Across the continent, 9% of forest loss was converted to soybean by 2016. Soybean-driven deforestation was concentrated at the active frontiers, nearly half located in the Brazilian Cerrado. Efforts to limit future deforestation must consider how soybean expansion may drive deforestation indirectly by displacing pasture or other land uses. Holistic approaches that track land use across all commodities coupled with vegetation monitoring are required to maintain critical ecosystem services.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Soybean expansion across South America in the twenty-first century.
Fig. 2: Selected regional examples of soybean expansion in South America.
Fig. 3: Year 2001 land source of annual soybean between 2002 and 2019 in major biomes in South America.
Fig. 4: Annual area of soybean-driven deforestation per biome 2001–2016.
Fig. 5: Potential of future soybean expansion onto lands with recent forest loss.

Data availability

The annual soybean maps generated in this study can be viewed and downloaded at https://glad.earthengine.app/view/south-america-soybean and https://glad.umd.edu/projects/commodity-crop-mapping-and-monitoring-south-america. Forest change maps are available at https://glad.earthengine.app/view/global-forest-change.

Code availability

Satellite-based soybean classification was carried out using the GLAD Landsat Analysis Ready Data and Tools52 available at https://glad.geog.umd.edu/ard/home. Custom code for analysing soybean-driven deforestation is available from corresponding authors upon reasonable request.

References

  1. 1.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).

    Article  Google Scholar 

  8. 8.

    Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    FAOSTAT (FAO, 2019); http://www.fao.org/faostat

  10. 10.

    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article  Google Scholar 

  11. 11.

    Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    Article  Google Scholar 

  13. 13.

    Rudorff, B. F. T. et al. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).

    Article  Google Scholar 

  14. 14.

    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).

    Article  CAS  Google Scholar 

  16. 16.

    Gollnow, F., Hissa, Ld. B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).

    Article  Google Scholar 

  17. 17.

    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. https://doi.org/10.1111/conl.12671 (2019).

  18. 18.

    Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).

    Article  Google Scholar 

  19. 19.

    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).

    Article  Google Scholar 

  21. 21.

    Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).

    Article  CAS  Google Scholar 

  22. 22.

    Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon soy moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).

    Article  Google Scholar 

  23. 23.

    Cerrado Manifesto. The Future of the Cerrado in the Hands of the Market: Deforestation and Native Vegetation Conversion Must Be Stopped (2017); http://d3nehc6yl9qzo4.cloudfront.net/downloads/cerradoconversionzero_sept2017_2.pdf

  24. 24.

    Meyfroidt, P. et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9, 074012 (2014).

    Article  Google Scholar 

  25. 25.

    PRODES (INPE, 2019); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  26. 26.

    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article  Google Scholar 

  27. 27.

    Argentina: Oilseeds and Products Annual (USDA Foreign Agricultural Service, 2016).

  28. 28.

    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).

    Article  Google Scholar 

  31. 31.

    Gasparri, N. I. & le Polain de Waroux, Y. The coupling of South American soybean and cattle production frontiers: new challenges for conservation policy and land change science. Conserv. Lett. 8, 290–298 (2015).

    Article  Google Scholar 

  32. 32.

    Fehlenberg, V. et al. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Change 45, 24–34 (2017).

    Article  Google Scholar 

  33. 33.

    le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).

    Article  Google Scholar 

  34. 34.

    Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 3, e1601047 (2017).

    Article  Google Scholar 

  35. 35.

    De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).

    Article  Google Scholar 

  36. 36.

    Fearnside, P. M. Soybean cultivation as a threat to the environment in Brazil. Environ. Conserv. 28, 23–38 (2002).

    Article  Google Scholar 

  37. 37.

    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/5/2/024002 (2010).

  38. 38.

    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: the 2012 Revision (FAO, 2012).

    Google Scholar 

  40. 40.

    Brandão, A. Jr et al. Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. Sustainability https://doi.org/10.3390/su12031277 (2020).

  41. 41.

    Martini, D. Z., Moreira, M. A., Cruz de Aragão, L. E. Oe, Formaggio, A. R. & Dalla-Nora, E. L. Potential land availability for agricultural expansion in the Brazilian Amazon. Land Use Policy 49, 35–42 (2015).

    Article  Google Scholar 

  42. 42.

    Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8, 1154–1180 (2014).

    Article  Google Scholar 

  43. 43.

    Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbágy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206, 60–70 (2015).

    Article  Google Scholar 

  44. 44.

    Schulz, C. et al. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Weinhold, D., Killick, E. & Reis, E. J. Soybeans, poverty and inequality in the Brazilian Amazon. World Dev. 52, 132–143 (2013).

    Article  Google Scholar 

  46. 46.

    Garrett, R. D. & Rausch, L. L. Green for gold: social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant Stud. 43, 461–493 (2016).

    Article  Google Scholar 

  47. 47.

    Oliveira, G. & Hecht, S. Sacred groves, sacrifice zones and soy production: globalization, intensification and neo-nature in South America. J. Peasant Stud. 43, 251–285 (2016).

    Article  Google Scholar 

  48. 48.

    Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).

    Article  Google Scholar 

  49. 49.

    Song, X.-P. et al. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 190, 383–395 (2017).

    Article  Google Scholar 

  50. 50.

    King, L. et al. A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sens. Environ. 195, 13–29 (2017).

    Article  Google Scholar 

  51. 51.

    Potapov, P. et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000-2017 Landsat time-series. Remote Sens. Environ. 232, 111278 (2019).

    Article  Google Scholar 

  52. 52.

    Potapov, P. et al. Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens. 12, 426 (2020).

    Article  Google Scholar 

  53. 53.

    Global Forest Resources Assessment 2015 (FAO, 2015).

  54. 54.

    Brazil’s Submission of a Forest Reference Emission Level (FREL) for Reducing Emissions from Deforestation in the Amazonia Biome for REDD+ Results-Based Payments Under the UNFCCC from 2016 to 2020 (Ministry of Environment of Brazil, 2018); https://redd.unfccc.int/files/2018_frel_submission_brazil.pdf

  55. 55.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  56. 56.

    Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Gordon and Betty Moore Foundation (7864, M.C.H.), the NASA Land-Cover and Land-Use Change Program (NNX15AK65G, M.C.H. and 80NSSC20K1490, X.-P.S.), the USGS Landsat Science Team (140G0118C0013, M.C.H.) and the NASA Harvest Program (80NSSC18M0039, M.C.H.). M.A. was supported by CNPq (National Council for Scientific and Technological Development) Grant 306334/2020-8. We thank F. Monti, D. Saúl and P. Oricchio for assisting with field data collection in Argentina. We thank V. F. Reno and L. V. Oldoni for assisting with field data collection in Brazil.

Author information

Affiliations

Authors

Contributions

X.-P.S. and M.C.H. designed the study; X.-P.S., P.P., B.A., J.P., M.A., A.L. and V.Z. conducted satellite data analysis; S.V.S. and A.T. contributed ideas for statistical design and area estimation; X.-P.S., M.C.H., P.P., J.P., M.A., A.L., V.Z., C.M.D.B., M.C.C., E.J.C., L.B.F., A.H.-S., S.M.J., A.H.P. and S.T. collected field data. A.H.P. designed online data visualization. M.C.H. secured funding support. X.-P.S. wrote the initial draft with substantial input from M.C.H., S.V.S. and M.A. All authors commented on drafts.

Corresponding authors

Correspondence to Xiao-Peng Song or Matthew C. Hansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, XP., Hansen, M.C., Potapov, P. et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat Sustain (2021). https://doi.org/10.1038/s41893-021-00729-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing