Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The value of US coral reefs for flood risk reduction

An Author Correction to this article was published on 30 April 2021

This article has been updated

Abstract

Habitats, such as coral reefs, can mitigate increasing flood damages through coastal protection services. We provide a fine-scale, national valuation of the flood risk reduction benefits of coral habitats to people, property, economies and infrastructure. Across 3,100 km of US coastline, the top-most 1 m of coral reefs prevents the 100-yr flood from growing by 23% (113 km2), avoiding flooding to 53,800 (62%) people, US$2.7 billion (90%) damage to buildings and US$2.6 billion (49%) in indirect economic effects. We estimate the hazard risk reduction benefits of US coral reefs to exceed US$1.8 billion annually. Many highly developed coastlines in Florida and Hawaii receive annual benefits of over US$10 million km–1, whereas US reefs critically reduce flooding of vulnerable populations. This quantification of spatial risk reduction can help to prioritize joint actions in flood management and environmental conservation, opening new opportunities to support reef management with hazard mitigation funding.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Changes in the 100-yr flood hazard zones with current coral reefs and with the loss of the top-most 1 m of reefs.
Fig. 2: Annual social risk reduction benefits provided by US coral reefs.
Fig. 3: Annual economic risk reduction benefits provided by US coral reefs.
Fig. 4: Nationwide estimates of risk and flood protection benefits provided by US coral reefs.
Fig. 5: Regional differences and inequality aspects of the risk reduction provided by US coral reefs.

Data availability

All data needed to evaluate the conclusions are present in the paper, the Supplementary Information and databases referenced therein. The flood extents and depths that support the findings of this study are available in ScienceBase at https://doi.org/10.5066/P9KMH2VX

Change history

References

  1. Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

    Article  Google Scholar 

  2. Melillo, J. M. et al. (eds) Climate Change Impacts in the United States: The Third National Climate Assessment (US Global Change Research Program, 2014); https://doi.org/10.1038/s41893-021-00706-6

  3. Klotzbach, P. P. J., Bowen, S. G., PielKe, R. G. R. & Bell, M. Continental U.S. hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorol. Soc. 99, 1359–1376 (2018).

    Article  Google Scholar 

  4. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 2013).

  5. Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

    Article  CAS  Google Scholar 

  6. Reguero, B. G., Losada, I. J. & Méndez, F. J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 10, 205 (2019).

    Article  CAS  Google Scholar 

  7. Reguero, B. G., Losada, I. J., Díaz-Simal, P., Méndez, F. J. & Beck, M. W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 10, e0133409 (2015).

  8. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  CAS  Google Scholar 

  9. Kumar, L. & Taylor, S. Exposure of coastal built assets in the South Pacific to climate risks. Nat. Clim. Change 5, 992–996 (2015).

    Google Scholar 

  10. Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    CAS  Article  Google Scholar 

  11. Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).

    Article  Google Scholar 

  12. Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).

    Article  CAS  Google Scholar 

  13. Reguero, B. G., Beck, M. W., Bresch, D. N., Calil, J. & Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: a case study from the Gulf Coast of the United States. PLoS ONE 13, e0192132 (2018).

    Article  CAS  Google Scholar 

  14. Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).

    CAS  Article  Google Scholar 

  15. Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402 (2013).

    Article  CAS  Google Scholar 

  16. Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    CAS  Article  Google Scholar 

  17. Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun. 9, 2186 (2018).

  18. Reguero, B. G. et al. The risk reduction benefits of the Mesoamerican Reef in Mexico. Front. Mar. Sci. 7, 125 (2019).

    Google Scholar 

  19. Narayan, S. et al. The value of coastal wetlands for flood damage reduction in the Northeastern USA. Sci. Rep. 7, 9463 (2017).

    Article  CAS  Google Scholar 

  20. Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018).

    CAS  Article  Google Scholar 

  21. Harris, D. L. et al. Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Sci. Adv. 4, eaao4350 (2018).

    Article  Google Scholar 

  22. Reguero, B. G., Beck, M. W., Agostini, V. N., Kramer, P. & Hancock, B. Coral reefs for coastal protection: a new methodological approach and engineering case study in Grenada. J. Environ. Manag. 210, 146–161 (2018).

    Article  Google Scholar 

  23. Yates, K. K., Zawada, D. G., Smiley, N. A. & Tiling-Range, G. Divergence of seafloor elevation and sea level rise in coral reef ecosystems. Biogeosciences 14, 1739–1772 (2017).

    Article  Google Scholar 

  24. Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science 350, 769–771 (2015).

    CAS  Article  Google Scholar 

  25. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  Article  Google Scholar 

  26. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Article  Google Scholar 

  27. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Article  Google Scholar 

  28. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS  Article  Google Scholar 

  29. Redirecting Army Corps of Engineers Civil Works Resources During National Emergencies (Congressional Research Service, 2019); https://fas.org/sgp/crs/natsec/IF11084.pdf

  30. Sun, F. & Carson, R. T. Coastal wetlands reduce property damage during tropical cyclones. Proc. Natl Acad. Sci. USA 117, 5719–5725 (2020).

    CAS  Article  Google Scholar 

  31. Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).

    Article  Google Scholar 

  32. Pascal, N. et al. Economic valuation of coral reef ecosystem service of coastal protection: a pragmatic approach. Ecosyst. Serv. 21, 72–80 (2016).

    Article  Google Scholar 

  33. Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck, M. W. The global flood protection benefits of mangroves. Sci. Rep. 10, 4404 (2020).

    Article  CAS  Google Scholar 

  34. Barbier, E. B. Valuing the storm protection service of estuarine and coastal ecosystems. Ecosyst. Serv. 11, 32–38 (2015).

    Article  Google Scholar 

  35. Whelchel, A. W., Reguero, B. G., van Wesenbeeck, B. & Renaud, F. G. Advancing disaster risk reduction through the integration of science, design and policy into eco-engineering and several global resource management processes. Int. J. Disaster Risk Reduct. 32, 29–41 (2018).

    Article  Google Scholar 

  36. Gibbs, A. E., Cole, A. D., Lowe, E., Reguero, B. G. & Storlazzi, C. D. Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands US Geological Survey data release (USGS, 2019); https://doi.org/10.5066/P9KMH2VX

  37. National Coastal Population Report. Population Trends from 1970 to 2020 (NOAA, 2013).

  38. Highfield, W. E., Norman, S. A. & Brody, S. D. Examining the 100-year floodplain as a metric of risk, loss and household adjustment. Risk Anal. 33, 186–191 (2013).

    Article  Google Scholar 

  39. Quataert, E., Storlazzi, C., van Rooijen, A., Cheriton, O. & van Dongeren, A. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophys. Res. Lett. 42, 2015GL064861 (2015).

    Article  Google Scholar 

  40. Storlazzi, C. D. et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 4, eaap9741 (2018).

    Article  Google Scholar 

  41. Brander, L. M. & van Beukering, P. The Total Economic Value of U.S. Coral Reefs: A Review of The Literature (NOAA, 2013).

  42. Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    CAS  Article  Google Scholar 

  43. Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 10, 3785 (2019).

    Article  CAS  Google Scholar 

  44. Storlazzi, C. D., Cheriton, O. M., van Hooidonk, R., Zhao, Z. & Brainard, R. Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Sci. Rep. 10, 13435 (2020).

    CAS  Article  Google Scholar 

  45. Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    CAS  Article  Google Scholar 

  46. Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    CAS  Article  Google Scholar 

  47. McCreless, E. & Beck, M. W. Rethinking our global coastal investment portfolio. J. Ocean Coast. Econ. 3, 6 (2016).

  48. Reguero, B. G. et al. Financing coastal resilience by combining nature-based risk reduction with insurance. Ecol. Econ. 169, 106487 (2020).

    Article  Google Scholar 

  49. Hawaiian Islands National Shoreline Management Study (USACE, 2018).

  50. Fletcher, C. H. et al. National Assessment of Shoreline Change: Historical Shoreline Change in the Hawaiian Islands (USGS, 2012).

  51. Williams, A., Rangel-Buitrago, N. G., Pranzini, E. & Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 156, 4–20 (2018).

    Article  Google Scholar 

  52. Scawthorn, C. et al. HAZUS-MH flood loss estimation methodology. I: Overview and flood hazard characterization. Nat. Hazards Rev. 7, 60–71 (2006).

    Article  Google Scholar 

  53. Scawthorn, C. et al. HAZUS-MH flood loss estimation methodology. II. Damage and loss. Assess. Nat. Hazards Rev. 7, 72–81 (2006).

    Article  Google Scholar 

  54. Reguero, B. G., Menéndez, M., Méndez, F. J., Mínguez, R. & Losada, I. J. A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coast. Eng. 65, 38–55 (2012).

    Article  Google Scholar 

  55. Camus, P., Mendez, F. J. & Medina, R. A hybrid efficient method to downscale wave climate to coastal areas. Coast. Eng. 58, 851–862 (2011).

    Article  Google Scholar 

  56. Booij, N., Ris, R. & Holthuijsen, L. A third generation wave model for coastal region. I: Model description and validation. J. Geophys. Res. 104, 7649–7666 (1999).

    Article  Google Scholar 

  57. Hoeke, R., Storlazzi, C. & Ridd, P. Hydrodynamics of a bathymetrically complex fringing coral reef embayment: wave climate, in situ observations and wave prediction. J. Geophys. Res. Ocean. 116, C04018 (2011).

  58. Storlazzi, C. D., Elias, E. P. L. & Berkowitz, P. Many atolls may be uninhabitable within decades due to climate change. Sci. Rep. 5, 14546 (2015).

    CAS  Article  Google Scholar 

  59. Taebi, S. & Pattiaratchi, C. Hydrodynamic response of a fringing coral reef to a rise in mean sea level. Ocean Dyn. 64, 975–987 (2014).

    Article  Google Scholar 

  60. Storlazzi, C. D. et al. Rigorously Valuing the Role of U.S. Coral Reefs in Coastal Hazard Risk Reduction (USGS, 2019); https://doi.org/10.3133/ofr20191027

  61. Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L. & Miller, T. L. Digital Shoreline Analysis System (DSAS) version 3.0: An ArcGIS Extension for Calculating Shoreline Change (USGS, 2005).

  62. Méndez, F. J., Menéndez, M., Luceño, A. & Losada, I. J. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. J. Geophys. Res. Ocean. 111, C07024 (2006).

    Article  Google Scholar 

  63. Extreme Water Levels—Annual Exceedance Probability Curves (NOAA, accessed 1 March 2020); https://tidesandcurrents.noaa.gov/est/

  64. Van Dongeren, A. et al. Numerical modeling of low-frequency wave dynamics over a fringing coral reef. Coast. Eng. 73, 178–190 (2013).

    Article  Google Scholar 

  65. Roelvink, D. et al. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133–1152 (2009).

    Article  Google Scholar 

  66. Pomeroy, A., Lowe, R. J., Symonds, G., Van Dongeren, A. R. & Moore, C. The dynamics of infragravity wave transformation over a fringing reef. J. Geophys. Res. 117, C11022 (2012).

  67. Quataert, E., Storlazzi, C., van Dongeren, A. & McCall, R. The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts. Coast. Eng. 160, 103704 (2020).

    Article  Google Scholar 

  68. Montaggioni, L. F. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci. Rev. 71, 1–75 (2005).

    Article  Google Scholar 

  69. Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).

    CAS  Article  Google Scholar 

  70. Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).

    Article  Google Scholar 

  71. Hughes, T. P. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    CAS  Article  Google Scholar 

  72. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B 276, 3019–3025 (2009).

  73. Wood, N. J., Ratliff, J. & Peters, J. Community Exposure to Tsunami Hazards in California (USGS, 2013).

  74. 2010 Statistics of U.S. businesses (SUSB) Annual Datasets by Establishment Industry Database (U.S. Census Bureau, accessed 22 February 2018); https://www.census.gov/data/tables/2010/econ/susb/2010-susb-annual.html

  75. Olsen, A., Zhou, Q., Linde, J. & Arnbjerg-Nielsen, K. Comparing methods of calculating expected annual damage in urban pluvial flood risk assessments. Water 7, 255–270 (2015).

    Article  Google Scholar 

  76. Buckley, M. L., Lowe, R. J., Hansen, J. E., van Dongeren, A. R. & Storlazzi, C. Mechanisms of wave‐driven water level variability on reef‐fringed coastlines. J. Geophys. Res. Oceans 123, 3811–3831 (2018).

    Article  Google Scholar 

  77. Roeber, V. & Bricker, J. D. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan. Nat. Commun. 6, 7854 (2015).

    CAS  Article  Google Scholar 

  78. Van Zanten, B. T., Van Beukering, P. J. H. & Wagtendonk, A. J. Coastal protection by coral reefs: a framework for spatial assessment and economic valuation. Ocean Coast. Manag. 96, 94–103 (2014).

    Article  Google Scholar 

  79. Beetham, E. & Kench, P. S. Predicting wave overtopping thresholds on coral reef-island shorelines with future sea-level rise. Nat. Commun. 9, 3997 (2018).

    CAS  Article  Google Scholar 

  80. Pearson, S. G., Storlazzi, C. D., van Dongeren, A. R., Tissier, M. F. & Reniers, A. J. H. A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts. J. Geophys. Res. Ocean. 122, 10099–10117 (2017).

    Article  Google Scholar 

  81. Anderson, T. R. et al. Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Sci. Rep. 8, 14484 (2018).

    Article  CAS  Google Scholar 

  82. Parodi, M. U. et al. Uncertainties in coastal flood risk assessments in small island developing states. Nat. Hazards Earth Syst. Sci. 20, 2397–2414 (2020).

    Article  Google Scholar 

  83. Barnard, P. L. et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9, 4309 (2019).

    Article  CAS  Google Scholar 

  84. Tomás, A. et al. A methodology to estimate wave-induced coastal flooding hazard maps in Spain. J. Flood Risk Manag. 9, 289–305 (2016).

    Article  Google Scholar 

  85. Menéndez, P., Losada, I. J., Torres-Ortega, S., Toimil, A. & Beck, M. W. Assessing the effects of using high-quality data and high-resolution models in valuing flood protection services of mangroves. PLoS ONE 14, e0220941 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Erikson for her important insight and useful comments during the preparation of this article. This research was financially supported by the US Department of Interior, USGS through the Coastal and Marine Hazards and Resources Program’s Coral Reef Project and the US Department of Interior, Office of Insular Affairs. Additional support was provided by a Kingfisher Foundation grant to M.W.B. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

B.G.R., C.D.S. and M.W.B. designed and conceptualized the research and methodological approach. B.G.R., C.D.S., A.E.G., J.B.S., A.D.C. and K.A.C. performed the hazard analysis, reef modelling and damage calculations. B.G.R., C.D.S., M.W.B. and K.A.C. analysed the results and worked on the visualization. B.G.R., C.D.S. and M.W.B. wrote the manuscript together.

Corresponding author

Correspondence to Borja G. Reguero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–4 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reguero, B.G., Storlazzi, C.D., Gibbs, A.E. et al. The value of US coral reefs for flood risk reduction. Nat Sustain 4, 688–698 (2021). https://doi.org/10.1038/s41893-021-00706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00706-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing