Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Higher yields and more biodiversity on smaller farms


Small farms constitute most of the world’s farms and are a central focus of sustainable agricultural development. However, the relationship between farm size and production, profitability, biodiversity and greenhouse gas emissions remains contested. Here, we synthesize current knowledge through an evidence review and meta-analysis and show that smaller farms, on average, have higher yields and harbour greater crop and non-crop biodiversity at the farm and landscape scales than do larger farms. We find little conclusive evidence for differences in resource-use efficiency, greenhouse gas emission intensity and profits. Our findings highlight the importance of farm size in mediating some environmental and social outcomes relevant to sustainable development. We identify a series of research priorities to inform land- and market-based policies that affect smallholders globally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The probability of studies finding relationships between farm size and each outcome variable.
Fig. 2: The pooled effect sizes for each outcome variable that show the percent change per 1 ha increase in farm size.
Fig. 3: Forest plot for yields, where observations are in standardized form and 95% CI are given.
Fig. 4: Forest plot for resource efficiency, where observations are in standardized form and 95% CI are given.
Fig. 5: Forest plot for profitability, where observations are in standardized form and 95% CI are given.

Data availability

The data that support the findings of this study are available in the Supplementary Information. Source data are provided with this paper.

Code availability

The computer code that support the findings of this study is available in the Supplementary Information.


  1. 1.

    Meyfroidt, P. Mapping farm size globally: benchmarking the smallholders debate. Environ. Res. Lett. 12, 10–13 (2017).

    Google Scholar 

  2. 2.

    Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29 (2016).

    Google Scholar 

  3. 3.

    Food Security and Nutrition in the World (FAO, 2018).

  4. 4.

    Belfrage, K., Björklund, J. & Salomonsson, L. The effects of farm size and organic farming on diversity of birds, pollinators, and plants in a Swedish landscape. Ambio 34, 582–588 (2005).

    Google Scholar 

  5. 5.

    Rosset, P. Re-thinking agrarian reform, land and territory in La Via Campesina. J. Peasant Stud. 40, 721–775 (2013).

    Google Scholar 

  6. 6.

    Borras, S. M. in Transnational Agrarian Movements Confronting Globalization (Borras, S. M. et al.) 91–121 (Wiley-Blackwell, 2008).

  7. 7.

    Meas, T., Hu, W., Batte, M. T., Woods, T. A. & Ernst, S. Substitutes or complements? Consumer preference for local and organic food attributes. Am. J. Agric. Econ. 97, 1044–1071 (2015).

    Google Scholar 

  8. 8.

    Moon, W. & Pino, G. Do U.S. citizens support government intervention in agriculture? Implications for the political economy of agricultural protection. Agric. Econ. 49, 119–129 (2018).

    Google Scholar 

  9. 9.

    Altieri, M. A. Small Farms as a Planetary Ecological Asset: Five Key Reasons Why We Should Support the Revitalisation of Small farms in the Global South (Third World Network, 2008).

  10. 10.

    Konvicka, M., Benes, J. & Polakova, S. Smaller fields support more butterflies: comparing two neighbouring European countries with different socioeconomic heritage. J. Insect Conserv. 20, 1113–1118 (2016).

    Google Scholar 

  11. 11.

    Haji, J. Production efficiency of smallholders’ vegetable-dominated mixed farming system in eastern Ethiopia: a non-parametric approach. J. Afr. Econ. 16, 1–27 (2007).

    Google Scholar 

  12. 12.

    Barrett, C. B., Bellemare, M. F. & Hou, J. Y. Reconsidering conventional explanations of the inverse productivity–size relationship. World Dev. 38, 88–97 (2010).

    Google Scholar 

  13. 13.

    Sen, A. K. An aspect of Indian agriculture. Econ. Wkly 14, 243–246 (1962).

    Google Scholar 

  14. 14.

    Chayanov, A. V. V. The Theory of Peasant Cooperatives (Ohio State Univ. Press, 1926).

  15. 15.

    Otsuka, K., Liu, Y. & Yamauchi, F. Growing advantage of large farms in Asia and its implications for global food security. Glob. Food Sec. 11, 5–10 (2016).

    Google Scholar 

  16. 16.

    Rada, N. E. & Fuglie, K. O. New perspectives on farm size and productivity. Food Policy 84, 147–152 (2019).

    Google Scholar 

  17. 17.

    Smith, R. K., Jennings, N. V., & Harris, S. A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mammal Rev. 35, 1–24 (2005).

    Google Scholar 

  18. 18.

    Rudel, T. et al. Do smallholder, mixed crop-livestock livelihoods encourage sustainable agricultural practices? A meta-analysis. Land 5, 6 (2016).

    Google Scholar 

  19. 19.

    Cohn, A. S. et al. Smallholder agriculture and climate change. Annu. Rev. Environ. Resour. 42, 347–375 (2017).

    Google Scholar 

  20. 20.

    Graeub, B. E. et al. The state of family farms in the world. World Dev. 87, 1–15 (2016).

    Google Scholar 

  21. 21.

    Ebel, R. Are small farms sustainable by nature? Review of an ongoing misunderstanding in agroecology. Challenges Sustain. 8, 17–29 (2020).

    Google Scholar 

  22. 22.

    De Koeijer, T. J., Wossink, G. A. A., Struik, P. C. & Renkema, J. A. Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. J. Environ. Manag. 66, 9–17 (2002).

    Google Scholar 

  23. 23.

    Barrett, C. B., Bellemare, M. F. & Hou, J. Y. Reconsidering conventional explanations of the inverse productivity size relationship. World Dev. 38, 88–97 (2010).

    Google Scholar 

  24. 24.

    Sen, A. K. Size of holdings and productivity. Econ. Wkly 16, 323–326 (1964).

  25. 25.

    Dorward, A. Agricultural labour productivity, food prices and sustainable development impacts and indicators. Food Policy 39, 40–50 (2013).

    Google Scholar 

  26. 26.

    Zimmerer, K. S. Geographies of seed networks for food plants (potato, Ulluco) and approaches to agrobiodiversity conservation in the Andean countries. Soc. Nat. Resour. Int. J. 16, 583–601 (2011).

    Google Scholar 

  27. 27.

    Bicksler, A. et al. Methodologies for strengthening informal indigenous vegetable seed systems in northern Thailand and Cambodia. Acta Hortic. 958, 67–74 (2012).

    Google Scholar 

  28. 28.

    Coomes, O. T. et al. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 56, 41–50 (2015).

    Google Scholar 

  29. 29.

    Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L. & Chookolingo, B. How much of our world’s food do smallholders produce? Glob. Food Sec. 17, 64–72 (2018).

    Google Scholar 

  30. 30.

    Fifanou, V. G., Ousmane, C., Gauthier, B. & Brice, S. Traditional agroforestry systems and biodiversity conservation in Benin (West Africa). Agrofor. Syst. 82, 1–13 (2011).

    Google Scholar 

  31. 31.

    Keleman, A., Hellin, J. & Flores, D. Diverse varieties and diverse markets: scale-related maize ‘profitability crossover’ in the central Mexican highlands. Hum. Ecol. 41, 683–705 (2013).

    Google Scholar 

  32. 32.

    McCord, P. F., Cox, M., Schmitt-Harsh, M. & Evans, T. Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 42, 738–750 (2015).

    Google Scholar 

  33. 33.

    Jonsen, I. D. & Fahrig, L. Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc. Ecol. 12, 185–197 (1997).

    Google Scholar 

  34. 34.

    Ahrenfeldt, E. J. et al. Pollinator communities in strawberry crops—variation at multiple spatial scales. Bull. Entomol. Res. 105, 497–506 (2015).

    CAS  Google Scholar 

  35. 35.

    Concepción, E. D., Fernandez-González, F. & Díaz, M. Plant diversity partitioning in Mediterranean croplands: effects of farming intensity, field edge, and landscape context. Ecol. Appl. 22, 972–981 (2012).

    Google Scholar 

  36. 36.

    Bravo-Monroy, L., Tzanopoulos, J. & Potts, S. G. G. Ecological and social drivers of coffee pollination in Santander, Colombia. Agric. Ecosyst. Environ. 211, 145–154 (2015).

    Google Scholar 

  37. 37.

    Horgan, F. G. Invasion and retreat: shifting assemblages of dung beetles amidst changing agricultural landscapes in central Peru. Biodivers. Conserv. 18, 3519–3541 (2009).

    Google Scholar 

  38. 38.

    Schai-Braun, S. C. & Hacklander, K. Home range use by the European hare (Lepus europaeus) in a structurally diverse agricultural landscape analysed at a fine temporal scale. Acta Theriol. 59, 277–287 (2014).

    Google Scholar 

  39. 39.

    Lovell, S. T., Mendez, V. E., Erickson, D. L., Nathan, C. & DeSantis, S. Extent, pattern, and multifunctionality of treed habitats on farms in Vermont, USA. Agrofor. Syst. 80, 153–171 (2010).

    Google Scholar 

  40. 40.

    Pekin, B. K. Anthropogenic and topographic correlates of natural vegetation cover within agricultural landscape mosaics in Turkey. Land Use Policy 54, 313–320 (2016).

    Google Scholar 

  41. 41.

    Chand, R., Prasanna, P. A. L. & Singh, A. Farm size and productivity: understanding the strengths of smallholders and improving their livelihoods. Econ. Polit. Wkly 54, 5–11 (2011).

    Google Scholar 

  42. 42.

    Dorward, A. Farm size and productivity in malawian smallholder agriculture. J. Dev. Stud. 35, 141–161 (1999).

    Google Scholar 

  43. 43.

    Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. NY Acad. Sci. 1355, 52–76 (2015).

    Google Scholar 

  44. 44.

    Carletto, C., Savastano, S. & Zezza, A. Fact or artifact: the impact of measurement errors on the farm size–productivity relationship. J. Dev. Econ. 103, 254–261 (2013).

    Google Scholar 

  45. 45.

    Abay, K. A., Abate, G. T., Barrett, C. B. & Tanguy, B. Correlated non-classical measurement errors, ‘second best’ policy inference and the inverse size–productivity relationship in agriculture. J. Dev. Econ. 139, 171–184 (2019).

  46. 46.

    Hanesen, Z. K., Libecap, G. D., Hansen, Z. K. & Libecap, G. D. Small farms, externalities, and the Dust Bowl of the 1930s. J. Polit. Econ. 112, 665–694 (2004).

    Google Scholar 

  47. 47.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

    CAS  Google Scholar 

  48. 48.

    Garibaldi, L. A. et al. Policies for ecological intensification of crop production. Trends Ecol. Evol. 34, 282–286 (2019).

    Google Scholar 

  49. 49.

    Laborde Debucquet, D., Murphy, S., Parent, M., Porciello, J. & Smaller, C. Ceres2030: Sustainable Solutions to End Hunger Summary Report (International Institute for Sustainable Development (IISD), 2020);

  50. 50.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Br. Med. J. 339, b2535 (2009).

    Google Scholar 

  51. 51.

    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

    Google Scholar 

  52. 52.

    Agresti, A. Categorical Data Analysis (Wiley, 2002).

  53. 53.

    Christensen, R. H. B. Analysis of ordinal data with cumulative link models—estimation with the R-package ordinal. R-package version 28 (2015).

  54. 54.

    Becker, B. J. & Wu, M.-J. The synthesis of regression slopes in meta-analysis. Stat. Sci. 22, 414–429 (2007).

    Google Scholar 

  55. 55.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. (2015).

  56. 56.

    Rodríguez-Barranco, M., Tobías, A., Redondo, D., Molina-Portillo, E. & Sánchez, M. J. Standardizing effect size from linear regression models with log-transformed variables for meta-analysis. BMC Med. Res. Methodol. 17, 44 (2017).

  57. 57.

    Batte, M. T. & Ehsani, M. R. The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers. Comput. Electron. Agric. 53, 28–44 (2006).

    Google Scholar 

  58. 58.

    Ouin, A. & Burel, F. Influence of herbaceous elements on butterfly diversity in hedgerow agricultural landscapes. Agric. Ecosyst. Environ. 93, 45–53 (2002).

    Google Scholar 

  59. 59.

    Brown, P. W. & Schulte, L. A. Agricultural landscape change (1937–2002) in three townships in Iowa, USA. Landsc. Urban Plan. 100, 202–212 (2011).

    Google Scholar 

  60. 60.

    Teshome, A., Patterson, D., Asfaw, Z., Dalle, S. & Torrance, J. K. Changes of Sorghum bicolor landrace diversity and farmers’ selection criteria over space and time, Ethiopia. Genet. Resour. Crop Evol. 63, 55–77 (2016).

    Google Scholar 

  61. 61.

    Gedebo, A., Appelgren, M., Bjornstad, A. & Tsegaye, A. Analysis of indigenous production methods and farm-based biodiversity of amochi (Arisaema schimperian, Schott) in two sub-zones of Southern Ethiopia. Genet. Resour. Crop Evol. 54, 1429–1436 (2007).

    Google Scholar 

  62. 62.

    Assunção, J. J. & Braido, L. H. B. Testing household-specific explanations for the inverse productivity relationship. Am. J. Agric. Econ. 89, 980–990 (2007).

    Google Scholar 

  63. 63.

    Altman, D. G. et al. Predictors of crop diversification: a survey of tobacco farmers in North Carolina (USA). Tob. Control 7, 376–382 (1998).

    CAS  Google Scholar 

  64. 64.

    Külekçi, M. Technical efficiency analysis for oilseed sunflower farms: a case study in Erzurum, Turkey. J. Sci. Food Agric. 90, 1508–1512 (2010).

    Google Scholar 

  65. 65.

    Latruffe, L., Balcombe, K., Davidova, S. & Zawalinska, K. Technical and scale efficiency of crop and livestock farms in Poland: does specialization matter? Agric. Econ. 32, 281–296 (2005).

    Google Scholar 

  66. 66.

    Ullah, A. & Perret, S. R. Technical- and environmental-efficiency analysis of irrigated cotton-cropping systems in Punjab, Pakistan using data envelopment analysis. Environ. Manag. 54, 288–300 (2014).

    Google Scholar 

  67. 67.

    Binici, T., Zulauf, C. R., Kacira, O. O. & Karli, B. Assessing the efficiency of cotton production on the Harran Plain, Turkey. Outlook Agric. 35, 227–232 (2006).

    Google Scholar 

  68. 68.

    Deininger, K., Zegarra, E. & Lavadenz, I. Determinants and impacts of rural land market activity: evidence from Nicaragua. World Dev. 31, 1385–1404 (2003).

    Google Scholar 

  69. 69.

    Deininger, K. & Byerlee, D. The rise of large farms in land abundant countries: do they have a future? World Dev. 40, 701–714 (2012).

    Google Scholar 

  70. 70.

    Alene, A. D. & Hassan, R. M. The determinants of farm-level technical efficiency among adopters of improved maize production technology in western Ethiopia. Agrekon 42, 1–14 (2003).

    Google Scholar 

  71. 71.

    Stifel, D. & Minten, B. Isolation and agricultural productivity. Agric. Econ. 39, 1–15 (2008).

    Google Scholar 

  72. 72.

    Rada, N., Wang, C. & Qin, L. Subsidy or market reform? Rethinking China’s farm consolidation strategy. Food Policy 57, 93–103 (2015).

    Google Scholar 

Download references


We acknowledge funding from the University of British Columbia 4-Year Doctoral Fellowship & Social Sciences and Humanities Research Council (SSHRC) Insight grant no. 435-2016-0154.

Author information




V.R., N.R. and H.W. conceived the idea and designed the data collection process. V.R. collected and coded the data. V.R., Z.M. and N.R. designed the analysis. V.R. and Z.M. conducted the analysis. V.R., Z.M., N.R., H.W. and D.J. contributed interpretations of results. All authors wrote the paper.

Corresponding author

Correspondence to Vincent Ricciardi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Michael Clark and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–5 and Tables 1–4.

Supplementary Software 1

R script and underlying data to reproduce analysis.

Source data

Source Data Fig. 1

Processed data.

Source Data Fig. 2

Processed data.

Source Data Fig. 3

Processed data.

Source Data Fig. 4

Processed data.

Source Data Fig. 5

Processed data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ricciardi, V., Mehrabi, Z., Wittman, H. et al. Higher yields and more biodiversity on smaller farms. Nat Sustain (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing