Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unreflective use of old data sources produced echo chambers in the water–electricity nexus

Abstract

Echo chambers in science describe the amplification and repetition of information within closed networks. Frequently used data sources can cause echo chambers as scientists keep reading similar outputs from different sources, creating false perceptions of certainty and variety of data sources. We show this effect by studying the scientific and grey literature on water use by electricity systems. The power sector is the largest contributor to anthropogenic carbon emissions and the second largest water consumer. We have assessed the scope and references of 2,426 papers and created a citation network to trace original data sources. Most data sources used for the last 30 years originate from a few old US publications, recently also Chinese, that echo through publications. This echo effect, also reflected in recent scientific publications, creates a confirmation bias, also facilitating double counting of the water intensities of electricity generation. This example from sustainability science warns of the risk of echo chambers in other scientific disciplines.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Network of literature data sources.
Fig. 2: Peer-reviewed papers serving as data sources for case studies in the WEN.
Fig. 3: Countries of origin of data sources in relation to the countries for which assessments were made.
Fig. 4: Papers used as data sources of the water intensities of coal-fired power plants in the review of Jin et al.30.
Fig. 5: Double counting in the WEN literature.

Data availability

All datasets that support the findings of this study are publicly available, or available from the corresponding author upon reasonable request.

References

  1. IPCC: Summary for Policy Makers. In Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1–31 (Cambridge Univ. Press, 2014); https://doi.org/10.1017/CBO9781107415324

  2. IEA Clean Energy Transitions Programme (CETP): Annual Report 2018 (OECD Publications, 2019).

  3. Urban, J. J. Emerging scientific and engineering opportunities within the water-energy nexus. Joule 1, 665–688 (2017).

    Article  Google Scholar 

  4. Gerbens-Leenes, P. W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).

    Article  CAS  Google Scholar 

  5. Mathioudakis, V., Gerbens-Leenes, P. W., Van der Meer, T. H. H. & Hoekstra, A. Y. The water footprint of second-generation bioenergy: a comparison of biomass feedstocks and conversion techniques. J. Clean. Prod. 148, 571–582 (2017).

    Article  Google Scholar 

  6. Murrant, D., Quinn, A., Chapman, L. & Heaton, C. Water use of the UK thermal electricity generation fleet by 2050: part 2 quantifying the problem. Energy Policy 108, 859–874 (2017).

    Article  Google Scholar 

  7. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  8. Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. Y. Future electricity: the challenge of reducing both carbon and water footprint. Sci. Total Environ. 569, 1282–1288 (2016).

    Article  Google Scholar 

  9. Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A. & Bonneau, R. Tweeting from left to right. Psychol. Sci. 26, 1531–1542 (2015).

    Article  Google Scholar 

  10. Jasny, L., Waggle, J. & Fisher, D. R. An empirical examination of echo chambers in US climate policy networks. Nat. Clim. Change 5, 782–786 (2015).

    Article  Google Scholar 

  11. Choi, D., Chun, S., Oh, H., Han, J. & Kwon, T. “Taekyoung”. Rumor propagation is amplified by echo chambers in social media. Sci. Rep. 10, 310 (2020).

  12. Farrell, J. Politics: echo chambers and false certainty. Nat. Clim. Change 5, 719–720 (2015).

    Article  Google Scholar 

  13. Energy Demands on Water Resources: Report to Congress on the Interdependency of Energy and Water (US Department of Energy, 2006).

  14. Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. Y. The consumptive water footprint of electricity and heat: a global assessment. Environ. Sci. Water Res. Technol. 1, 285–297 (2015).

    Article  Google Scholar 

  15. Vaca-Jiménez, S., Gerbens-Leenes, P. W. & Nonhebel, S. The water footprint of electricity in Ecuador: technology and fuel variation indicate pathways towards water-efficient electricity mixes. Water Resour. Ind. 22, 100112 (2019).

    Article  Google Scholar 

  16. Vaca-Jiménez, S., Gerbens-Leenes, P. W. & Nonhebel, S. Water-electricity nexus in Ecuador: the dynamics of the electricity’s blue water footprint. Sci. Total Environ. 696, 133959 (2019).

    Article  Google Scholar 

  17. Water Use for Electric Power Generation (EPRI, 2008).

  18. Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Article  Google Scholar 

  19. Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

    Article  Google Scholar 

  20. Macknick, J., Sattler, S., Averyt, K., Clemmer, S. & Rogers, J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ. Res. Lett. 7, 045803 (2012).

    Article  Google Scholar 

  21. Gleick, P. H. Water and energy. Annu. Rev. Energy Environ. 19, 267–299 (1994).

    Article  Google Scholar 

  22. Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonisation of literature estimates. Environ. Res. Lett. 8, 015031 (2013).

    Article  CAS  Google Scholar 

  23. IEA World Energy Outlook 2012 33 (OECD Publications, 2012); https://doi.org/10.1787/weo-2012-en

  24. Averyt, K. et al. Freshwater Use by US Power Plants: Electricity’s Thirst for a Precious Resource (Energy and Water in a Warming World Initiative, UCS Publications, 2011).

  25. Hoff, H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus 1–52 (Stockholm Environment Institute, 2011).

  26. Sanders, K. T. Critical review: uncharted waters? The future of the electricity-water nexus. Environ. Sci. Technol. 49, 51–66 (2015).

    Article  CAS  Google Scholar 

  27. Cooper, D. C. & Sehlke, G. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production. Environ. Sci. Technol. 46, 3509–3518 (2012).

    Article  CAS  Google Scholar 

  28. Larsen, M. A. D. & Drews, M. Water use in electricity generation for water-energy nexus analyses: the European case. Sci. Total Environ. 651, 2044–2058 (2019).

    Article  CAS  Google Scholar 

  29. Gold, H., Goldstein, D. J., Probstein, R. F., Shen, J. S. & Yung, D. Water Requirements for Steam-Electric Power Generation and Synthetic Fuel Plants in the Western United States (US EPA, 1977).

  30. Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Water use of electricity technologies: a global meta-analysis. Renew. Sustain. Energy Rev. 115, 109391 (2019).

    Article  Google Scholar 

  31. Gleick, P. H. Water in Crisis: A Guide to the World’s Fresh Water Resource (Oxford Univ. Press, 1993).

  32. Inhaber, H. Water use in renewable and conventional electricity production. Energy Sources 26, 309–322 (2004).

    Article  Google Scholar 

  33. Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H. & Marks, D. H. The water consumption of energy production: an international comparison. Environ. Res. Lett. 9, 105002 (2014).

    Article  Google Scholar 

  34. Jornada, D. & Leon, V. J. Robustness methodology to aid multiobjective decision making in the electricity generation capacity expansion problem to minimise cost and water withdrawal. Appl. Energy 162, 1089–1108 (2016).

    Article  Google Scholar 

  35. Geels, F. W. & Kemp, R. Dynamics in socio-technical systems: typology of change processes and contrasting case studies. Technol. Soc. 29, 441–455 (2007).

    Article  Google Scholar 

  36. Rio Carrillo, A. M. & Frei, C. Water: a key resource in energy production. Energy Policy 37, 4303–4312 (2009).

    Article  Google Scholar 

  37. Fthenakis, V. & Kim, H. C. Life-cycle uses of water in US electricity generation. Renew. Sustain. Energy Rev. 14, 2039–2048 (2010).

    Article  Google Scholar 

  38. Davies, E. G. R., Kyle, P. & Edmonds, J. A. An integrated assessment of global and regional water demands for electricity generation to 2095. Adv. Water Resour. 52, 296–313 (2013).

    Article  Google Scholar 

  39. Ali, B. & Kumar, A. Development of life cycle water-demand coefficients for coal-based power generation technologies. Energy Convers. Manag. 90, 247–260 (2015).

    Article  Google Scholar 

  40. Zhang, C., Zhong, L., Fu, X., Wang, J. & Wu, Z. Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory. Environ. Sci. Technol. 50, 1642–1652 (2016).

    Article  CAS  Google Scholar 

  41. Jiang, D. & Ramaswami, A. The ‘thirsty’ water-electricity nexus: field data on the scale and seasonality of thermoelectric power generation’s water intensity in China. Environ. Res. Lett. 10, 024015 (2015).

    Article  Google Scholar 

  42. Srinivasan, S. et al. Water for electricity in India: a multi-model study of future challenges and linkages to climate change mitigation. Appl. Energy 210, 673–684 (2018).

    Article  Google Scholar 

  43. Kyle, P. et al. Influence of climate change mitigation technology on global demands of water for electricity generation. Int. J. Greenh. Gas. Control 13, 112–123 (2013).

    Article  Google Scholar 

  44. Ali, B. The cost of conserved water for coal power generation with carbon capture and storage in Alberta, Canada. Energy Convers. Manag. 158, 387–399 (2018).

    Article  Google Scholar 

  45. Hardy, L., Garrido, A. & Juana, L. Evaluation of Spain’s water-energy nexus. Int. J. Water Resour. Dev. 28, 151–170 (2012).

    Article  Google Scholar 

  46. Linares, P., Sáenz & Sáenz de Miera, G. Implications for Water of the World Energy Scenarios (Economics for Energy, 2010).

  47. Water & Sustainability (Volume 3): US Water Consumption for Power Production - The Next Half Century (EPRI, 2002).

  48. Peer, R. A. M. & Sanders, K. T. Characterising cooling water source and usage patterns across US thermoelectric power plants: a comprehensive assessment of self-reported cooling water data. Environ. Res. Lett. 11, 124030 (2016).

    Article  Google Scholar 

  49. Luderer, G. et al. Description of the REMIND Model (Version 1.6). SSRN Electron. J. https://doi.org/10.2139/ssrn.2697070 (2015).

  50. Gleick, P. H. Environmental consequences of hydroelectric development: the role of facility size and type. Energy 17, 735–747 (1992).

    Article  CAS  Google Scholar 

  51. Mekonnen, M. M. & Hoekstra, A. Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 16, 179–187 (2012).

    Article  Google Scholar 

  52. Grubert, E. & Sanders, K. T. Water use in the United States energy system: a national assessment and unit process inventory of water consumption and withdrawals. Environ. Sci. Technol. 52, 6695–6703 (2018).

    Article  CAS  Google Scholar 

  53. Grubert, E., Rogers, E. & Sanders, K. T. Consistent terminology and reporting are needed to describe water quantity use. J. Water Resour. Plan. Manag. 146, 04020064 (2020).

    Article  Google Scholar 

  54. Albrecht, T. R., Crootof, A. & Scott, C. A.The water-energy-food nexus: a systematic review of methods for nexus assessment. Environ. Res. Lett. 13, 043002 (2018).

    Article  Google Scholar 

  55. Newell, J. P., Goldstein, B. & Foster, A. A 40-year review of food-energy-water nexus literature and its application to the urban scale. Environ. Res. Lett. 14, 073003 (2019).

    Article  Google Scholar 

  56. Liu, L. & Mei, S. Visualising the GVC research: a co-occurrence network based bibliometric analysis. Scientometrics 109, 953–977 (2016).

    Article  Google Scholar 

  57. Schiebel, E. Visualization of research fronts and knowledge bases by three-dimensional areal densities of bibliographically coupled publications and co-citations. Scientometrics 91, 557–566 (2012).

    Article  Google Scholar 

  58. Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies (NREL, 2011).

  59. Zhong, S., Geng, Y., Liu, W., Gao, C. & Chen, W. A bibliometric review on natural resource accounting during 1995–2014. J. Clean. Prod. 139, 122–132 (2016).

    Article  Google Scholar 

  60. Fornito, A., Zalesky, A. & Bullmore, E. T. in Fundamentals of Brain Network Analysis (eds Fornito, A. et al.) 115–136 (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-407908-3.00004-2

  61. MATLAB. version 9.7.0 (R2019b). (The MathWorks Inc., 2019).

  62. Okadera, T., Chontanawat, J. & Gheewala, S. H. Water footprint for energy production and supply in Thailand. Energy 77, 49–56 (2014).

    Article  Google Scholar 

  63. Del Vicario, M. et al. The spreading of misinformation online. Proc. Natl Acad. Sci. USA 113, 554–559 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Shan, M. Mengdie and D. Zhao for helping us assess the characteristics and quality of the Chinese data sources. This work was supported by SENESCYT (National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador).

Author information

Authors and Affiliations

Authors

Contributions

S.V.-J. performed data analysis and wrote the paper. P.W.G.-L. conceptually designed the study and edited the paper. S.N. and K.H. supervised the project and provided an outline for the paper and edited it.

Corresponding author

Correspondence to S. Vaca-Jiménez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Lu Liu, Kelly Sanders and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Notes 1–8, Figs. 1–19 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaca-Jiménez, S., Gerbens-Leenes, P.W., Nonhebel, S. et al. Unreflective use of old data sources produced echo chambers in the water–electricity nexus. Nat Sustain 4, 537–546 (2021). https://doi.org/10.1038/s41893-021-00686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00686-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing