Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate

Abstract

The direct oxidation of methane to more desirable, one-carbon oxygenated molecules such as methanol and formaldehyde offers a pathway towards a more sustainable chemical industry as the current commercial reforming process involving two steps features a high carbon footprint and energy consumption. Here, we report the selective photocatalytic oxidation of methane at room temperature using quantum-sized bismuth vanadate nanoparticles as the catalyst and oxygen as a mild oxidant. The reaction offers a high selectivity, of 96.6% for methanol or 86.7% for formaldehyde, under optimum wavelength and intensity of light, reaction time and amount of water solvent. Comprehensive characterizations disclose a multistep reaction mechanism in which the activation of methane by the hydroxyl radical determines the reaction rate. This work broadens the avenue towards the selective conversion of the greenhouse gas methane into desirable chemical products in a sustainable way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gibbs free energy corresponding to the formation of CH3OOH, CH3OH, HCHO and CO2 from CH4 oxidation at 298 K.
Fig. 2: Synthesis and characterization of q-BiVO4.
Fig. 3: Photocatalytic oxidation of CH4 under different conditions.
Fig. 4: Selective oxidations of CH4.
Fig. 5: Proposed reaction mechanism.
Fig. 6: Stepwise analysis of the reaction mechanism.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    Article  CAS  Google Scholar 

  2. Aoki, K. et al. Direct conversion of methane into methanol over MoO3/SiO2 catalyst in an excess amount of water vapor. Catal. Today 45, 29–33 (1998).

    Article  CAS  Google Scholar 

  3. Sugino, T., Kido, A., Azuma, N., Ueno, A. & Udagawa, Y. Partial oxidation of methane on silica-supported silicomolybdic acid catalysts in an excess amount of water vapor. J. Catal. 190, 118–127 (2000).

    Article  CAS  Google Scholar 

  4. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  Google Scholar 

  5. Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 10, 506–513 (2019).

    Article  CAS  Google Scholar 

  6. Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018).

    Article  CAS  Google Scholar 

  7. Murcia-López, S., Villa, K., Andreu, T. & Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 4, 3013–3019 (2014).

    Article  Google Scholar 

  8. Taylor, C. E. Methane conversion via photocatalytic reactions. Catal. Today 84, 9–15 (2003).

    Article  CAS  Google Scholar 

  9. Song, H. et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 141, 20507–20515 (2019).

    Article  CAS  Google Scholar 

  10. Xin, J. et al. Nb- and Ti-containing silica-based mesoporous molecular sieves as catalysts for photocatalytic oxidation of methane. Stud. Surf. Sci. Catal. 135, 273 (2001).

    Article  Google Scholar 

  11. Bañares, M. A., Alemany, L. J., López Granados, M., Faraldos, M. & Fierro, J. L. G. Partial oxidation of methane to formaldehyde on silica-supported transition metal oxide catalysts. Catal. Today 33, 73–83 (1997).

    Article  Google Scholar 

  12. Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592–1602 (2008).

    Article  CAS  Google Scholar 

  13. Bahmanpour, A. M., Hoadley, A. & Tanksale, A. Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase. Green Chem. 17, 3500–3507 (2015).

    Article  CAS  Google Scholar 

  14. Michael, D. & Ward, J. F. B. Methane photoactivation on copper molybdate. An experimental and theoretical study. J. Phys. Chem. 91, 6515–6521 (1987).

    Article  Google Scholar 

  15. Zalfani, M., Mahdouani, M., Bourguiga, R. & Su, B. L. Experimental and theoretical study of optical properties and quantum size phenomena in the BiVO4/TiO2 nanostructures. Superlattice. Microstruct. 83, 730–744 (2015).

    Article  CAS  Google Scholar 

  16. Venkatesan, R., Velumani, S. & Kassiba, A. Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 135, 842–848 (2012).

    Article  CAS  Google Scholar 

  17. Kumar, S. et al. LNG: an eco-friendly cryogenic fuel for sustainable development. Appl. Energy 88, 4264–4273 (2011).

    Article  CAS  Google Scholar 

  18. Dispenza, C., Dispenza, G., La Rocca, V. & Panno, G. Exergy recovery during LNG regasification: electric energy production – part one. Appl. Therm. Eng. 29, 380–387 (2009).

    Article  CAS  Google Scholar 

  19. Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).

    Article  CAS  Google Scholar 

  20. Cui, X. et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem 4, 1902–1910 (2018).

    Article  CAS  Google Scholar 

  21. Vaghjiani, G. L. & Ravishankara, A. R. Absorption cross sections of CH3OOH, H2O2, and D2O2 vapors between 210 and 365 nm at 297 K. J. Geophys. Res. 94, 3487–3492 (1989).

    Article  CAS  Google Scholar 

  22. Roehl, C. M., Marka, Z., Fry, J. L. & Wennberg, P. O. Near-UV photolysis cross sections of CH3OOH and HOCH2OOH determined via action spectroscopy. Atmos. Chem. Phys. 7, 713–720 (2007).

    Article  CAS  Google Scholar 

  23. Sun, S., Wang, W., Li, D., Zhang, L. & Jiang, D. Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal. 4, 3498–3503 (2014).

    Article  CAS  Google Scholar 

  24. Wang, L. et al. Photoelectrochemical device based on Mo-doped BiVO4 enables smart analysis of the global antioxidant capacity in food. Chem. Sci. 6, 6632–6638 (2015).

    Article  CAS  Google Scholar 

  25. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article  CAS  Google Scholar 

  26. Jiang, J., Li, H. & Zhang, L. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem. Eur. J. 18, 6360–6369 (2012).

    Article  CAS  Google Scholar 

  27. Sterrer, M., Diwald, O., Knözinger, E., Sushko, P. V. & Shluger, A. L. Energies and dynamics of photoinduced electron and hole processes on MgO powders. J. Phys. Chem. B 106, 12478–12482 (2002).

    Article  CAS  Google Scholar 

  28. Kaliaguine, S. L., Shelimov, B. N. & Kazansky, V. B. Reactions of methane and ethane with hole centers O. J. Catal. 55, 384–393 (1978).

    Article  CAS  Google Scholar 

  29. Simmons, E. M. & Hartwig, J. F. On the Interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    Article  CAS  Google Scholar 

  30. Gómez-Gallego, M. & Sierra, M. A. Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4963 (2011).

    Article  Google Scholar 

  31. Meng, X. et al. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 5, 2296–2325 (2019).

    Article  CAS  Google Scholar 

  32. Hahnenstein, I., Hasse, H., Kreiter, C. G. & Maurer, G. 1H- and 13C-NMR spectroscopic study of chemical equilibria in solutions of formaldehyde in water, deuterium oxide, and methanol. Ind. Eng. Chem. Res. 33, 1022–1029 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (XDA09040100, Z.T.), the National Key Basic Research Program of China (2016YFA0200700, Z.T.), the Frontier Science Key Project of the Chinese Academy of Sciences (QYZDJ-SSW-SLH038, Z.T.), the National Natural Science Foundation of China (21890381 and 21721002, Z.T.), the K.C. Wong Education Foundation (Z.T.) and GuangDong Provincial Public Security Department (GZQC20-PZ11-FD084, D.H.).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and Z.T. conceived the idea, developed the outline, designed the experiment and compiled the manuscript. Y.F. conducted all the experiments and tests with the assistance of W.Z., X.Q., H.L. Y.J. and Z.S. The project was coordinated by D.H. who also provided critical feedback. L.N. and Z.T. supervised the whole project.

Corresponding authors

Correspondence to Dongxue Han or Zhiyong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Masahiro Miyauchi, Vitaly Ordomsky, Bryce Sadtler and Zhiguo Yi for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–43, Tables 1–4 and refs. 1–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Zhou, W., Qiu, X. et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat Sustain 4, 509–515 (2021). https://doi.org/10.1038/s41893-021-00682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00682-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing