Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A sunlight-responsive metal–organic framework system for sustainable water desalination


Light-responsive materials with high adsorption capacity and sunlight-triggered regenerability are highly desired for their low-cost and environmentally friendly industrial separation processes. Here we report a poly(spiropyran acrylate) (PSP) functionalized metal–organic framework (MOF) as a sunlight-regenerable ion adsorbent for sustainable water desalination. Under dark conditions, the zwitterionic isomer quickly adsorbs multiple cations and anions from water within 30 minutes, with high ion adsorption loadings of up to 2.88 mmol g−1 of NaCl. With sunlight illumination, the neutral isomer rapidly releases these adsorbed salts within 4 minutes. Single-column desalination experiments demonstrated that PSP–MOF works efficiently for water desalination. A freshwater yield of 139.5 l kg−1 d−1 and a low energy consumption of 0.11 Wh l−1 would be reached for desalinating 2,233 ppm synthetic brackish water. Importantly, this adsorbent shows excellent stability and cycling performance. This work opens up a new direction for designing stimuli-responsive materials for energy-efficient and sustainable desalination and water purification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Demonstration of PSP-MIL-53 for light-triggered reversible salt adsorption.
Fig. 2: NaCl adsorption and desorption performance of PSP-MIL-53.
Fig. 3: Single-column desalination performance of PSP-MIL-53.

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information files.


  1. 1.

    Stokes, J. & Horvath, A. Life cycle energy assessment of alternative water supply systems. Int J. Life Cycle Assess. 11, 335–343 (2006).

    Google Scholar 

  2. 2.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  3. 3.

    Henderson‐Sellers, B. A new formula for latent heat of vaporization of water as a function of temperature. Q. J. R. Meteorol. Soc. 110, 1186–1190 (1984).

    Google Scholar 

  4. 4.

    Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    CAS  Google Scholar 

  5. 5.

    Burn, S. et al. Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination 364, 2–16 (2015).

    CAS  Google Scholar 

  6. 6.

    Ang, W. S., Yip, N. Y., Tiraferri, A. & Elimelech, M. Chemical cleaning of RO membranes fouled by wastewater effluent: achieving higher efficiency with dual-step cleaning. J. Memb. Sci. 382, 100–106 (2011).

    CAS  Google Scholar 

  7. 7.

    Amy, G. et al. Membrane-based seawater desalination: present and future prospects. Desalination 401, 16–21 (2017).

    CAS  Google Scholar 

  8. 8.

    Wang, Z. et al. Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Mater. Horiz. 6, 1433–1437 (2019).

    CAS  Google Scholar 

  9. 9.

    Porada, S., Zhao, R., van der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    CAS  Google Scholar 

  10. 10.

    Chandrasekara, N. G. N. & Pashley, R. Study of a new process for the efficient regeneration of ion exchange resins. Desalination 357, 131–139 (2015).

    CAS  Google Scholar 

  11. 11.

    Bolto, B. et al. An ion exchange process with thermal regeneration IX. A new type of rapidly reacting ion-exchange resin. Desalination 13, 269–285 (1973).

    CAS  Google Scholar 

  12. 12.

    Ou, R. et al. Thermoresponsive amphoteric metal–organic frameworks for efficient and reversible adsorption of multiple salts from water. Adv. Mater. 30, 1802767 (2018).

    Google Scholar 

  13. 13.

    Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    CAS  Google Scholar 

  14. 14.

    Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).

    CAS  Google Scholar 

  15. 15.

    Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Google Scholar 

  16. 16.

    Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Google Scholar 

  17. 17.

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & Van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    CAS  Google Scholar 

  18. 18.

    Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    CAS  Google Scholar 

  19. 19.

    Li, X.-P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    CAS  Google Scholar 

  20. 20.

    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    CAS  Google Scholar 

  21. 21.

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    CAS  Google Scholar 

  22. 22.

    Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    CAS  Google Scholar 

  23. 23.

    Roy, D., Cambre, J. N. & Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010).

    CAS  Google Scholar 

  24. 24.

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Google Scholar 

  25. 25.

    Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014).

    CAS  Google Scholar 

  26. 26.

    Radu, A. et al. Spiropyran-based reversible, light-modulated sensing with reduced photofatigue. J. Photochem. Photobiol. A 206, 109–115 (2009).

    CAS  Google Scholar 

  27. 27.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  28. 28.

    Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    CAS  Google Scholar 

  29. 29.

    Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    CAS  Google Scholar 

  30. 30.

    Wang, C., Liu, X., Demir, N. K., Chen, J. P. & Li, K. Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016).

    CAS  Google Scholar 

  31. 31.

    Llewellyn, P. L. et al. Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. J. Am. Chem. Soc. 130, 12808–12814 (2008).

    CAS  Google Scholar 

  32. 32.

    Boutin, A. et al. Breathing transitions in MIL‐53 (Al) metal–organic framework upon xenon adsorption. Angew. Chem. Int. Ed. 48, 8314–8317 (2009).

    CAS  Google Scholar 

  33. 33.

    Song, X., Zhou, J., Li, Y. & Tang, Y. Correlations between solvatochromism, Lewis acid–base equilibrium and photochromism of an indoline spiropyran. J. Photochem. Photobiol. A 92, 99–103 (1995).

    CAS  Google Scholar 

  34. 34.

    Rosario, R., Gust, D., Hayes, M., Springer, J. & Garcia, A. A. Solvatochromic study of the microenvironment of surface-bound spiropyrans. Langmuir 19, 8801–8806 (2003).

    CAS  Google Scholar 

  35. 35.

    Fissi, A., Pieroni, O., Angelini, N. & Lenci, F. Photoresponsive polypeptides: photochromic and conformational behavior of spiropyran-containing poly (L-glutamate) s under acid conditions. Macromolecules 32, 7116–7121 (1999).

    CAS  Google Scholar 

  36. 36.

    Kho, Y. M. & Shin, E. J. Spiropyran-isoquinoline dyad as a dual chemosensor for Co(II) and In(III) detection. Molecules 22, 1569 (2017).

    Google Scholar 

  37. 37.

    Kunin, R. Further studies on the weak electrolyte ion exchange resin desalination process (desal process). Desalination 4, 38–44 (1968).

    CAS  Google Scholar 

  38. 38.

    Kunin, R. & McGarvey, F. X. Monobed deionization with ion exchange resins. Ind. Eng. Chem. 43, 734–740 (1951).

    CAS  Google Scholar 

  39. 39.

    Bolto, B., Eppinger, K., Jackson, M. & Siudak, R. An ion-exchange process with thermal regeneration XIV thermally regenerable resin systems with high capacities. Desalination 34, 171–188 (1980).

    CAS  Google Scholar 

  40. 40.

    Karabelas, A. J., Koutsou, C. P., Kostoglou, M. & Sioutopoulos, D. C. Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination 431, 15–21 (2018).

    CAS  Google Scholar 

  41. 41.

    Zhang, Y. Z. et al. Fit-for-purpose block polymer membranes molecularly engineered for water treatment. NPJ Clean Water 1, 2 (2018).

    Google Scholar 

  42. 42.

    Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

    CAS  Google Scholar 

Download references


This work is supported by the Australia Research Council (project no. LP160101228). We thank the staff of the Monash Centre for Electron Microscopy (MCEM) for their technical support and assistance with the electron microscopy.

Author information




R.O., H.Z. and H.W. designed the experiments. R.O. and V.X.T. performed the synthesis of the samples. R.O., V.X.T., H.M.H., J.H. and L.H. performed the characterizations. R.O. and L.Z. calculated the energy consumption. R.O., H.Z., V.X.T. and H.W. wrote the paper. G.P.S., A.D., L.Z., X.Z. and L.J. contributed to the project discussions and manuscript writing.

Corresponding author

Correspondence to Huanting Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Tables 1–7 and Notes 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ou, R., Zhang, H., Truong, V.X. et al. A sunlight-responsive metal–organic framework system for sustainable water desalination. Nat Sustain 3, 1052–1058 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing