Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduced ecosystem services of desert plants from ground-mounted solar energy development


Deserts are prioritized as recipient environments for solar energy development; however, the impacts of this development on desert plant communities are unknown. Desert plants represent long-standing ecological, economic and cultural resources for humans, especially indigenous peoples, but their role in supplying ecosystem services (ESs) remains understudied. We measured the effect of solar energy development decisions on desert plants at one of the world’s largest concentrating solar power plants (Ivanpah, California; capacity of 392 MW). We documented the negative effects of solar energy development on the desert scrub plant community. Perennial plant cover and structure are lower in bladed treatments than mowed treatments, which are, in turn, lower than the perennial plant cover and structure recorded in undeveloped controls. We determined that cacti species and Mojave yucca (Yuccaschidigera) are particularly vulnerable to solar development (that is, blading, mowing), whereas Schismus spp.—invasive annual grasses—are facilitated by blading. The desert scrub community confers 188 instances of ESs, including cultural services to 18 Native American ethnic groups. Cultural, provisioning and regulating ESs of desert plants are lower in bladed and mowed treatments than in undeveloped controls. Our study demonstrates the potential for solar energy development in deserts to reduce biodiversity and socioecological resources, as well as the role that ESs play in informing energy transitions that are sustainable and just.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ESV system of a desert scrub plant community in the Ivanpah Valley, Mojave Desert.
Fig. 2: Spatial elements of the study site and design.
Fig. 3: Solar energy development decision treatments.
Fig. 4: Effects of solar energy development decisions on perennial plant structure, cover of plants using the CAM photosynthetic pathway and cover of the invasive grasses Schismus spp. during peak spring growing season within ISEGS and in surrounding natural desert.
Fig. 5: Effects of solar energy development decisions on the ESV of plants among first-tier ES categories.

Data availability

An Excel workbook with all raw plant data is included as Source data.


  1. 1.

    Halmo, D. B., Stoffle, R. W. & Evans, M. J. Paitu Nanasuagaindu Pahonupi (Three Sacred Valleys): cultural significance of Gosiute, Paiute, and Ute plants. Hum. Organ. 52, 142–150 (1993).

    Google Scholar 

  2. 2.

    Stoffle, R. W., Halmo, D. B. & Austin, D. E. Cultural landscapes and traditional cultural properties: a southern Paiute view of the Grand Canyon and Colorado River. Am. Indian Q. 21, 229–249 (1997).

    Google Scholar 

  3. 3.

    Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).

  4. 4.

    Smith, M., Veth, P., Hiscock, P. & Wallis, L. A. in Desert Peoples, Archaeological Perspectives Vol. 1 (eds Veth, P. et al.) Ch. 1 (Blackwell, 2005).

  5. 5.

    Stoffle, R. W. & Evans, M. J. Holistic conservation and cultural triage: American Indian perspectives on cultural resources. Hum. Organ 49, 91–99 (1990).

    Google Scholar 

  6. 6.

    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (UC Press, 2005).

  7. 7.

    Saenz-Hernandez, C., Corrales-Garcia, J. & Aquino-Perez, G. in Cacti: Biology and Uses (ed. Nobel, P. S.) 211–234 (UC Press, 2002).

  8. 8.

    Larsen, L. & Harlan, S. L. Desert dreamscapes: residential landscape preference and behavior. Landsc. Urban Plan. 78, 8–100 (2006).

    Google Scholar 

  9. 9.

    Rokeach, M. The Nature of Human Values (Free Press, 1973).

  10. 10.

    Schwartz, S. H. & Bilksy, W. Toward a universal psychology structure of human values. J. Person. Soc. Psychol. 58, 878–891 (1987).

    Google Scholar 

  11. 11.

    Kamakura, W. A. & Novak, T. P. Value system segmentation: exploring the meaning of LOV. J. Consum. Res. 19, 119–132 (1992).

    Google Scholar 

  12. 12.

    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).

    Google Scholar 

  13. 13.

    Hernandez, R. R. et al. Techno-ecological synergies of solar energy produce beneficial outcomes across industrial-ecological boundaries to mitigate global change. Nat. Sustain. 2, 560–568 (2019).

    Google Scholar 

  14. 14.

    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).

    CAS  Google Scholar 

  15. 15.

    Folke, C. et al. Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO 31, 437–440 (2002).

    Google Scholar 

  16. 16.

    Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).

    CAS  Google Scholar 

  17. 17.

    Chan, K. M. A. et al. Where are cultural and social in ecosystem services? A framework for constructive engagement. BioScience 62, 744–756 (2012).

    Google Scholar 

  18. 18.

    Farber, S. C., Constanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).

    Google Scholar 

  19. 19.

    Copeland, S. M., Bradford, J. B., Duniway, M. C. & Schuster, R. M. Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8, e01823 (2017).

  20. 20.

    Durant, S. M. et al. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380 (2012).

    CAS  Google Scholar 

  21. 21.

    McDonald, R. I. et al. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).

    Google Scholar 

  22. 22.

    Hernandez, R. R. et al. Solar energy development impacts on terrestrial ecosystems. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015a).

    CAS  Google Scholar 

  23. 23.

    Hernandez, R. R. et al. The land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).

    CAS  Google Scholar 

  24. 24.

    Lovich, J. E. & Bainbridge, D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environ. Manag. 24, 309–326 (1999).

    CAS  Google Scholar 

  25. 25.

    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, USA. Environ. Sci. Technol. 51, 14472–14482 (2017).

    CAS  Google Scholar 

  26. 26.

    Potter, C. Landsat time series analysis of vegetation changes in solar energy development areas of the Lower Colorado Desert, southern California. J. Geosci. Environ. Prot. 4, 1–6 (2016).

    Google Scholar 

  27. 27.

    Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).

    CAS  Google Scholar 

  28. 28.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  Google Scholar 

  29. 29.

    Bidak, L. M., Kamal, S. A., Halmy, M. W. A. & Heneidy, S. Z. Goods and services provided by native plants in desert ecosystems: examples from the northwestern coastal desert of Egypt. Glob. Ecol. Conserv. 3, 433–447 (2015).

    Google Scholar 

  30. 30.

    Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).

    CAS  Google Scholar 

  31. 31.

    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).

    CAS  Google Scholar 

  32. 32.

    Brooks, M. L. & Matchett, J. R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980-2004. J. Arid Environ. 67, 148–164 (2006).

    Google Scholar 

  33. 33.

    Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).

    CAS  Google Scholar 

  34. 34.

    Drennan, P. M. & Nobel, P. S. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23, 767–781 (2000).

    CAS  Google Scholar 

  35. 35.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    Google Scholar 

  36. 36.

    Daily, G. C. & Matson, P. A. Ecosystem services: from theory to implementation. Proc. Natl Acad. Sci. USA 105, 9455–9456 (2008).

    CAS  Google Scholar 

  37. 37.

    Kuletz, V. L. The Tainted Desert: Environmental and Social Ruin in the American West (Routledge, 1998).

  38. 38.

    Adamson, J. American Indian Literature, Environmental Justice, and Ecocriticism (Univ. Arizona Press, 2001).

  39. 39.

    Romero, H., Mendez, M. & Smith, P. Mining development and environmental injustice in the Atacama Desert of northern Chile. Environ. Justice 5, 70–76 (2012).

    Google Scholar 

  40. 40.

    Vine, D. Base Nation: How U.S. Military Bases Abroad Harm America and the World (Henry Holt and Co., 2015).

  41. 41.

    Tsosie, R. Indigenous people and environmental justice: the impact of climate change. Univ. Col. Law Rev. 78, 1625–1678 (2007).

    Google Scholar 

  42. 42.

    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).

    Google Scholar 

  43. 43.

    Brookshire, D. & Kaza, N. Planning for seven generations: energy planning of American Indian tribes. Energy Policy 62, 1506–1514 (2013).

    Google Scholar 

  44. 44.

    Bronin, S. C. The promise and perils of renewable energy on tribal lands. Tulane Environ. Law J. 26, 221–237 (2013).

    Google Scholar 

  45. 45.

    Polis, G. A. The Ecology of Desert Communities (Univ. Arizona Press, 1991).

  46. 46.

    Aranda-Rickert, A., Diez, P. & Marazzi, B. Extrafloral nectar fuels ant life in deserts. AoB PLANTS 6, plu068 (2014).

    Google Scholar 

  47. 47.

    Rickleffs, R. E. & Hainsworth, F. R. Tenperature regulation in nestling cactus wren: the nest environment. Condor 71, 32–37 (1969).

    Google Scholar 

  48. 48.

    Pfeiler, E. & Markow, T. A. Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2, 218–231 (2011).

    Google Scholar 

  49. 49.

    Pellmyr, O., Thompson, J. N., Brown, J. M. & Harrison, R. G. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148, 827–847 (1996).

    Google Scholar 

  50. 50.

    Abella, S. R. & Berry, K. H. Enhancing and restoring habitat for the desert tortoise. J. Fish. Wildl. Manag. 7, 255–279 (2016).

    Google Scholar 

  51. 51.

    Hernandez, R. R. et al. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 5, 353–358 (2015).

    Google Scholar 

  52. 52.

    Clark, W. C., van Kerkhoff, L., Lebel, L. & Gallopin, G. C. Crafting usable knowledge for sustainable development. Proc. Natl Acad. Sci. USA 113, 4570–4578 (2016).

    CAS  Google Scholar 

Download references


We thank B. Beatty, B. Elkin, C. François, T. Heitz, M. King, J. Meyers, M. Milliron, G. Piantka, L. Rose, A. Scheib, T. Sisk, D. Stoms, J. Valentine, J. Weigand and B. Weise for feedback that improved this study. We thank NRG Energy for their cooperation on and support of this project. We thank J. Whitney for assistance with field data collection and K. Lamy for graphic design assistance. We received funding for this research from the California Energy Commission (Electric Program Investment Charge-15-060), the Bureau of Land Management California (grant number L19AC00279) and UC Davis Agricultural Experiment Station Hatch Projects (grant numbers CA-R-A-6689 and CA-D-LAW-2352-H).

Author information




S.M.G. and R.R.H. conceptualized the study, designed the experiment and collected field data. S.M.G. conducted literature syntheses and analysed the data. S.M.G. and R.R.H. wrote the manuscript.

Corresponding author

Correspondence to Steven M. Grodsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, methods and text.

Source data

Source Data Fig. 1

Excel workbook of raw data used in study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grodsky, S.M., Hernandez, R.R. Reduced ecosystem services of desert plants from ground-mounted solar energy development. Nat Sustain 3, 1036–1043 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing