Divergent responses of soil organic carbon to afforestation

Abstract

Large-scale afforestation is regarded as an effective natural climate solution. However, afforestation-induced changes in soil organic C (SOC) are poorly quantified due to the paucity of large-scale sampling data. Here, we provide the first comprehensive assessment of the afforestation impact on SOC stocks with a pairwise comparative study of samples from 619 control-and-afforested plot pairs in northern China. We found context-dependent effects of afforestation on SOC: afforestation increases SOC density (SOCD) in C-poor soils but decreases SOCD in C-rich soils, especially in deeper soil. Thus, the fixed biomass/SOC ratio assumed in previous studies could overestimate the SOC enhancement by afforestation. By extrapolating the sampling data to the entire region, we estimate that afforestation increased SOC stocks in northern China by only 234.9 ± 9.6 TgC over the last three decades. The study highlights the importance of including pre-afforestation soil properties in models of soil carbon dynamics and carbon sink projections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The distributions of ΔSOCD.
Fig. 2: Controlling factors of ΔSOCD.
Fig. 3: Estimates of carbon change due to afforestation in northern China based on BRT.
Fig. 4: Comparison of carbon stocks and changes between soil and vegetation biomass.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014); http://ipcc.ch/report/ar5/

  3. 3.

    Global Forest Resources Assessment 2015 (FAO, 2016).

  4. 4.

    Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Yao, Y., Piao, S. & Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 63, 1108–1117 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Paul, K., Polglase, P., Nyakuengama, J. & Khanna, P. K. Change in soil carbon following afforestation. For. Ecol. Manag. 168, 241–257 (2002).

    Article  Google Scholar 

  8. 8.

    Guo, L. & Gifford, R. Soil carbon stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  9. 9.

    Shi, S., Zhang, W., Zhang, P., Yu, Y. & Ding, F. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For. Ecol. Manag. 296, 53–63 (2013).

    Article  Google Scholar 

  10. 10.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    Article  Google Scholar 

  11. 11.

    Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Shvidenko, A. & Nilsson, S. A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B, 391–415 (2003).

    CAS  Google Scholar 

  14. 14.

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Eighth National Forest Resource Inventory Report (2009–2013) (State Forestry Administration of the People’s Republic of China, 2014).

  16. 16.

    He, B., Chen, A., Wang, H. & Wang, Q. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest region in China. Remote Sens. 7, 9998–10016 (2015).

    Article  Google Scholar 

  17. 17.

    Bryan, B. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Duan, H. et al. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci. 64, 1011–1020 (2011).

    Article  Google Scholar 

  19. 19.

    Houghton, R. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus Ser. B 51, 298–313 (1999).

    Article  Google Scholar 

  20. 20.

    Li, W. et al. Temporal response of soil organic carbon after grassland-related land-use change. Glob. Change Biol. 24, 4731–4746 (2018).

    Article  Google Scholar 

  21. 21.

    Peng, S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Shi, S. & Han, P. Estimating the soil carbon sequestration potential of China’s Grain for Green Project. Glob. Biogeochem. Cycles 28, 1279–1294 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, W. et al. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Glob. Change Biol. 17, 2657–2676 (2011).

    Article  Google Scholar 

  24. 24.

    Binkley D. & Fisher R. Ecology and Management of Forest Soils 4th edn (Wiley-Blackwell, 2013).

  25. 25.

    Crowther, T. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 151 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Davidson, E. & Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Harden, J. et al. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob. Change Biol. 24, e705–e718 (2018).

    Article  Google Scholar 

  29. 29.

    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Hart, P., Rayner, J. & Jenkinson, D. Influence of pool substitution on the interpretation of fertilizer experiments with 15N. J. Soil Sci. 37, 389403 (1986).

    Article  Google Scholar 

  32. 32.

    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Schlesinger, W. & Lichter, J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411, 466–469 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    Hong, S. et al. Afforestation neutralizes soil pH. Nat. Commun. 9, 520 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    Li, Y., Piao, S., Chen, A., Ciais, P. & Li, L. Z. X. Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl Sci. Rev. 7, 897–912 (2020).

    Article  Google Scholar 

  36. 36.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  37. 37.

    Xiong, Y. & Li, Q. Soils in China (Press of Sciences, 1987).

  38. 38.

    Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Change Biol. 13, 1989–2007 (2007).

    Article  Google Scholar 

  39. 39.

    Fang, J., Liu, G. & Xu, S. Biomass and net production of forest vegetation in China. Acta Ecologica Sinica 16, 497–508 (1996).

    Google Scholar 

  40. 40.

    Yang, K., He, J., Tang, W., Qin, J. & Cheng, C. On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 150, 38–46 (2010).

    Article  Google Scholar 

  41. 41.

    Chen, Y. et al. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 116, 999–1010 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    Batjes, N. World Soil Property Estimates for Broad-scale Modelling (WISE30sec, v.1.0) Report 2015/01 (ISRIC Soil Data Hub, 2015).

  43. 43.

    Harmonized World Soil Database Version 1.2 (FAO, 2012).

  44. 44.

    Running, S. MOD17A3H v006 MODIS/Terra Net Primary Production Yearly L4 Global 500m SIN Grid (NASA, 2015); https://doi.org/10.5067/modis/mod17a3h.006

  45. 45.

    Vegetation Atlas of China (Press of Sciences, 2001).

  46. 46.

    Zhang, Y., Yao, Y., Wang, X., Liu, Y. & Piao, S. Mapping spatial distribution of forest age in China. Earth Space Sci. 4, 108–116 (2017).

    Article  Google Scholar 

  47. 47.

    Benjamini, Y. & Yekutieli, D. The control of false discovery rate in multiple testing under dependency. Ann. Stat. 4, 1165–1188 (2001).

    Google Scholar 

  48. 48.

    Elith, J., Leathwick, J. & Hastie, T. Working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    Friedman, J. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).

    Article  Google Scholar 

  50. 50.

    Friedman, J. & Meulman, J. Multiple additive regression trees with application in epidemiology. Stat. Med. 22, 1365–1381 (2010).

    Article  Google Scholar 

  51. 51.

    Zeng, Z., Chen, A., Piao, S., Rabin, S. & Shen, Z. Environmental determinants of tropical forest and savanna distribution: a quantitative model evaluation and its implication. J. Geophys. Res. Biogeosci. 119, 1432–1445 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China grant no. 2017YFA0604702, the Strategic Priority Research Program (A) of the Chinese Academy of Sciences grant no. XDA20050101 and National Natural Science Foundation of China grant no. 41988101.

Author information

Affiliations

Authors

Contributions

S.P. and A.C. designed the research. G.Y. and N.C. collected samples in the field. S.H. performed the analysis. S.H., A.C. and S.P. drafted the paper. All authors contributed to the interpretation of the results and to the text.

Corresponding authors

Correspondence to Shilong Piao or Anping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Robustness test of the negative correlation between ΔSOCD and SOCD_c.

The slope and p value are the results of 100 simulations (see Methods for details). The dotted line indicates the 95% CI of the simulated slopes. The observed error is the mean value in Extended Data Fig. 7. The observed slope is consistent with Fig. 2a.

Extended Data Fig. 2 Robustness test of the negative correlation between ΔSOCD and SOCD_c across six tree species groups.

The same methods are used with Extended Data Fig. 1.

Extended Data Fig. 3 Comparison of ∆SOCD across groups of the original vegetation types.

The central lines in the box-whisker plots indicate the medians, and the bottom and top edges of the boxes indicate the 25th and 75th percentiles, respectively. The maximum whisker lengths are specified as 1.5 times the interquartile range, and outliers are marked using+. Independent sample t-tests with false discovery rate correction were conducted to compare the data of each group with 0. p > 0.05 for all five groups. A one-way ANOVA (post hoc LSD test) was also used to test the difference between groups (p = 0.07).

Extended Data Fig. 4 Comparison between observed and BRT-predicted ΔSOCD.

80% of the samples are randomly selected to train the model and the remaining are used for test, which is repeated for 10 times to avoid contingency.

Extended Data Fig. 5 The uncertainty of the estimated SOCD based on BRT.

The uncertainty is from standard errors between BRT models run for 100 times.

Extended Data Fig. 6 The schematic diagram of the sampling design.

Three profiles were dug in each plot.

Extended Data Fig. 7 The variation between profiles.

The bars indicate the frequency distribution of the coefficient of variations for soil organic carbon densities between three profiles in each plot.

Extended Data Fig. 8 Uncertainties of the thresholds estimated from bootstrapping method across six tree species and all groups pooled together.

Error bars indicate the 95% confidence intervals.

Supplementary information

Supplementary Information

Supplementary Tables 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Yin, G., Piao, S. et al. Divergent responses of soil organic carbon to afforestation. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-0557-y

Download citation