Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global reduction of solar power generation efficiency due to aerosols and panel soiling


Air pollution and dust prevail over many regions that have rapid growth of solar photovoltaic (PV) electricity generation, potentially reducing PV generation. Here we combine solar PV performance modelling with long-term satellite-observation-constrained surface irradiance, aerosol deposition and precipitation rates to provide a global picture of the impact of particulate matter (PM) on PV generation. We consider attenuation caused by both atmospheric PM and PM deposition on panels (soiling) in calculating the overall effect of PM on PV generation, and include precipitation removal of soiling and the benefits of panel cleaning. Our results reveal that, with no cleaning and precipitation-only removal, PV generation in heavily polluted and desert regions is reduced by more than 50% by PM, with soiling accounting for more than two-thirds of the total reduction. Our findings highlight the benefit of cleaning panels in heavily polluted regions with low precipitation and the potential to increase PV generation through air-quality improvements.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Average global surface solar resources and PV electricity generation, 2003–2014.
Fig. 2: Average reduction of PV CFs due to the effect of aerosols, 2003–2014.
Fig. 3: Comparison of regional-average percentage increase in PV CFs for fixed panels under various conditions.
Fig. 4: Comparison of aerosol impacts on PV CFs for fixed and tracking panels.
Fig. 5: Increase in PV CFs resulting from panel cleaning in various world regions relative to panel soiling removal by precipitation only.

Data availability

The datasets generated and analysed during the current study are available from the corresponding authors on reasonable request.

Code availability

The custom code generated during the current study is available from the corresponding authors on reasonable request.


  1. Renewables 2019 Global Status Report (REN 21, 2019).

  2. PVPS 2019 Snapshot of Global PV Markets (International Energy Agency, 2019).

  3. Feldman, D. & Margolis, R. Q4 2018/Q1 2019 Solar Industry Update (National Renewable Energy Laboratory, 2019).

  4. Technology Roadmap—Solar Photovoltaic Energy (International Energy Agency, 2014).

  5. Aerosol Optical Thickness (1 month—Terra/MODIS) (NASA, 2017).

  6. Streets, D. G. et al. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J. Geophys. Res. 114, D00D18 (2009).

    Google Scholar 

  7. Babu, S. S. et al. Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J. Geophys. Res. Atmos. 118, 11794–11806 (2013).

    Article  Google Scholar 

  8. Ridley, D. A., Heald, C. L., Kok, J. F. & Zhao, C. An observationally constrained estimate of global dust aerosol optical depth. Atmos. Chem. Phys. 16, 15097–15117 (2016).

    CAS  Article  Google Scholar 

  9. Li, X., Wagner, F., Peng, W., Yang, J. & Mauzerall, D. L. Reduction of solar photovoltaic resources due to air pollution in China.Proc. Natl Acad. Sci. USA 114, 11867–11872 (2017).

    CAS  Article  Google Scholar 

  10. Labordena, M., Neubauer, D., Folini, D., Patt, A. & Lilliestam, J. Blue skies over China: the effect of pollution-control on solar power generation and revenues. PLoS ONE 13, e0207028 (2018).

    Article  Google Scholar 

  11. Sweerts, B. et al. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nat. Energy 4, 657–663 (2019).

    Article  Google Scholar 

  12. Sarver, T., Al-Qaraghuli, A. & Kazmerski, L. L. A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 22, 698–733 (2013).

    Article  Google Scholar 

  13. Costa, S. C. S., Diniz, A. S. A. C. & Kazmerski, L. L. Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012–2015. Renew. Sustain. Energy Rev. 63, 33–61 (2016).

    Article  Google Scholar 

  14. Boyle, L., Flinchpaugh, H. & Hannigan, M. Assessment of PM dry deposition on solar energy harvesting systems: measurement–model comparison. Aerosol Sci. Technol. 50, 380–391 (2016).

    CAS  Article  Google Scholar 

  15. Singh Rajput, D. & Sudhakar, K. Effect of dust on the performance of solar PV panel. Int. J. ChemTech Res. 514, 974–4290 (2013).

    Google Scholar 

  16. Adinoyi, M. J. & Said, S. A. M. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew. Energy 60, 633–636 (2013).

    Article  Google Scholar 

  17. Al-Ammri, A. S., Ghazi, A. & Mustafa, F. Dust effects on the performance of PV street light in Baghdad City. In 2013 International Renewable and Sustainable Energy Conference (IRSEC) 18–22 (IEEE, 2013).

  18. Bergin, M. H., Ghoroi, C., Dixit, D., Schauer, J. J. & Shindell, D. T. Large reductions in solar energy production due to dust and particulate air pollution. Environ. Sci. Technol. Lett. 4, 339–344 (2017).

    CAS  Article  Google Scholar 

  19. Gueymard, C. A., Habte, A. & Sengupta, M. Reducing uncertainties in large-scale solar resource data: the impact of aerosols. IEEE J. Photovolt. 8, 1732–1737 (2018).

    Article  Google Scholar 

  20. Suri, M. & Cebecauer, T. Satellite-based solar resource data: model validation statistics versus user’s uncertainty. In ASES SOLAR 2014 Conference (ASES, 2014).

  21. Parrott, B., Carrasco Zanini, P., Shehri, A., Kotsovos, K. & Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 171, 526–533 (2018).

    CAS  Article  Google Scholar 

  22. Andrews, R. W., Stein, J. S., Hansen, C. & Riley, D. Introduction to the open source PV LIB for Python photovoltaic system modelling package. In IEEE 40th Photovoltaic Specialist Conference (PVSC) 170–174 (IEEE, 2014).

  23. Stein, J. S., Holmgren, W. F., Forbess, J. & Hansen, C. W. PVLIB: open source photovoltaic performance modeling functions for Matlab and Python. In IEEE 43rd Photovoltaic Specialists Conference 3–8 (IEEE, 2016).

  24. Holmgren, W. F., Andrews, R. W., Lorenzo, A. T. & Stein, J. S. PVLIB Python 2015. In IEEE 42nd Photovoltaic Specialist Conference (PVSC) 1–5 (IEEE, 2015).

  25. CERES SYN1deg Ed3A (CERES Science Team, 2016).

  26. Doelling, D. R. et al. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 30, 1072–1090 (2013).

    Article  Google Scholar 

  27. Rutan, D. A. et al. CERES synoptic product: methodology and validation of surface radiant flux. J. Atmos. Ocean. Technol. 32, 1121–1143 (2015).

    Article  Google Scholar 

  28. Kaye, J. et al. Use of Satellite Observations in NASA Reanalyses: MERRA-2 and Future Plans (Coordination Group for Meteorological Satellites, 2015).

  29. Bosilovich, M. G. et al. MERRA-2: Initial Evaluation of the Climate (Technical Report Series on Global Modeling and Data Assimilation, Vol. 43, NASA, 2015).

  30. Molod, A., Takacs, L., Suarez, M. & Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356 (2015).

    Article  Google Scholar 

  31. Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim. 30, 1643–1664 (2017).

    Article  Google Scholar 

  32. Colarco, P., da Silva, A., Chin, M. & Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. 115, D14207 (2010).

    Article  Google Scholar 

  33. Nowottnick, E. et al. Online simulations of mineral dust aerosol distributions: comparisons to NAMMA observations and sensitivity to dust emission parameterization. J. Geophys. Res. 115, D03202 (2010).

    Google Scholar 

  34. Randles, C. A. et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J. Clim. 30, 6823–6850 (2017).

    CAS  Article  Google Scholar 

  35. Buchard, V. et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies. J. Clim. 30, 6851–6872 (2017).

    CAS  Article  Google Scholar 

  36. Cordero, R. R. et al. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Sci. Rep. 8, 13943 (2018).

  37. Jiang, Y., Lu, L., Ferro, A. R. & Ahmadi, G. Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Sol. Energy 159, 1031–1036 (2018).

    Article  Google Scholar 

  38. Chen, L., Peng, S., Liu, J. & Hou, Q. Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China. J. Environ. Sci. 24, 632–639 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations



X.L., M.H.B. and D.L.M. designed the research. X.L. prepared the data and performed the PV performance simulations. X.L., D.L.M. and M.H.B. analysed the results. X.L. and D.L.M. wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Xiaoyuan Li or Denise L. Mauzerall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mauzerall, D.L. & Bergin, M.H. Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nat Sustain 3, 720–727 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing