Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity

Abstract

In response to the important benefits forests provide, there is a growing effort to reforest the world. Past policies and current commitments indicate that many of these forests will be plantations. Since plantations often replace more carbon-rich or biodiverse land covers, this approach to forest expansion may undermine objectives of increased carbon storage and biodiversity. We use an econometric land use change model to simulate the carbon and biodiversity impacts of subsidy driven plantation expansion in Chile between 1986 and 2011. A comparison of simulations with and without subsidies indicates that payments for afforestation increased tree cover through expansion of plantations of exotic species but decreased the area of native forests. Chile’s forest subsidies probably decreased biodiversity without increasing total carbon stored in aboveground biomass. Carefully enforced safeguards on the conversion of natural ecosystems can improve both the carbon and biodiversity outcomes of reforestation policies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of research approach.

Data availability

All data needed to replicate our results are available on the Harvard Dataverse at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6RDDQH.

Code availability

All code needed to replicate our results are available on github at https://github.com/rheilmayr/chile_subsidies.

References

  1. 1.

    Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Article  Google Scholar 

  3. 3.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Global Forest Resources Assessment (FAO, 2015).

  10. 10.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Article  Google Scholar 

  11. 11.

    Romijn, E. et al. Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. Forests 10, 510 (2019).

    Article  Google Scholar 

  12. 12.

    Bull, G. Q. et al. Industrial forest plantation subsidies: impacts and implications. Policy Econ. 9, 13–31 (2006).

    Article  Google Scholar 

  13. 13.

    Whiteman, A. Money doesn’t grow on trees: a perspective on prospects for making forestry pay. Unasylva 54, 3–10 (2003).

    Google Scholar 

  14. 14.

    Sedjo, R. A. The role of forest plantations in the world’s future timber supply. For. Chron. 77, 221–225 (2001).

    Article  Google Scholar 

  15. 15.

    Rudel, T. K. Tree farms: driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 26, 545–550 (2009).

    Article  Google Scholar 

  16. 16.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    Straaten, Ovan et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    Oyarzun, C. E. & Peña, L. Soil erosion and overland flow in forested areas with pine plantations at coastal mountain range, central Chile. Hydrol. Process. 9, 111–118 (1995).

    Article  Google Scholar 

  19. 19.

    Stephens, S. S. & Wagner, M. R. Forest plantations and biodiversity: a fresh perspective. J. For. 105, 307–313 (2007).

    Google Scholar 

  20. 20.

    Rittenhouse, C. D. & Rissman, A. R. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use change scenarios. Environ. Sci. Policy 21, 94–105 (2012).

    Article  Google Scholar 

  21. 21.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).

    Article  Google Scholar 

  22. 22.

    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).

    Article  Google Scholar 

  23. 23.

    Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).

    Article  Google Scholar 

  24. 24.

    Hua, F. et al. Tree plantations displacing native forests: the nature and drivers of apparent forest recovery on former croplands in southwestern China from 2000 to 2015. Biol. Conserv. 222, 113–124 (2018).

    Article  Google Scholar 

  25. 25.

    Nelson, E. et al. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proc. Natl Acad. Sci. USA 105, 9471–9476 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Intended Nationally Determined Contribution of Chile Towards the Climate Agreement of Paris 2015 (Gobierno de Chile, 2015); https://go.nature.com/2LZtVa3

  27. 27.

    Durán, A. P. & Barbosa, O. Seeing Chile’s forest for the tree plantations. Science 365, 1388–1388 (2019).

    Google Scholar 

  28. 28.

    Carrizosa, S. et al. Workshop on the Use of Financial Incentives for Industrial Forest Plantations: Proceedings (Inter-American Development Bank, 1995); https://go.nature.com/36AjlzF

  29. 29.

    Haltia, O. & Keipi, K. Financing Forest investments in Latin America: The Issue of Incentives (Inter-American Development Bank, 1997); https://go.nature.com/2B3H7bL

  30. 30.

    Hartwig C., F. La Tierra que Recuperamos (Editorial Los Andes, 1994).

  31. 31.

    Camus, P. Federico Albert: artífice de la gestión de los bosques de Chile. Rev. Geogr. Norte Gd 30, 55–63 (2003).

    Google Scholar 

  32. 32.

    Clapp, R. A. Creating competitive advantage: forest policy as industrial policy in Chile. Econ. Geogr. 71, 273–296 (1995).

    Article  Google Scholar 

  33. 33.

    Arnold, F. Sustitución de Bosque Nativo en Chile: destrucción de un valioso patrimonio natural (CODEFF, 1998).

  34. 34.

    Torey, S. Entrevista: ‘La solución es mejorar el control, no prohibir el uso del bosque’. Ambiente Desarro 33–35 (1994).

  35. 35.

    Pellet, P. F., Ugarte, E., Osorio, E. M. & Herrera, F. D. Conservación de la biodiversidad en Chile, ¿legalmente suficiente?: La necesidad de cartografiar la ley antes de decidir. Rev. Chil. Hist. Nat. 78, 125–141 (2005).

    Article  Google Scholar 

  36. 36.

    Informe Consolidado de Sustitucion de Bosque Nativo y Matorral Esclerofilo en el Patrimoniode Arauco (Forestal Arauco, 2012); https://go.nature.com/2M3ndzC

  37. 37.

    Farias, A. & Vergara, C. Informe Tecnico de Sustitucion de Bosque Nativo y Matorral Arborescente en el Patrimonio de Forestal Arauco S.A. (WWF, 2013); https://go.nature.com/3d5BWpI

  38. 38.

    Gilabert, H., Meza, F., Cabello, H., Aurtenenchea, M. & Laroze, A. Estimación Del Carbono Capturado En Las Plantaciones de Pino Radiata y Eucaliptos Relacionadas Con El DL 701 de 1974 (ODEPA, 2007).

  39. 39.

    Niklitschek, M. E. Trade liberalization and land use changes: explaining the expansion of afforested land in Chile. For. Sci. 53, 385–394 (2007).

    Google Scholar 

  40. 40.

    Evaluación de Impacto, Informe Final: Programa Bonificación Forestal D.L. 701 (Ministerio de Agricultura & CONAF, 2005).

  41. 41.

    Gonzalez, R. Econometric Modeling of Land-use Changes in Southern Chile (Universidad Austral de Chile, 2010).

  42. 42.

    Bopp, C., Engler, A., Jara-Rojas, R. & Arriagada, R. Are forest plantation subsidies affecting land use change and off-farm income? A farm-level analysis of Chilean small forest landowners. Land Use Policy 91, 104308 (2019).

  43. 43.

    Heilmayr, R. Conservation through intensification? The effects of plantations on natural forests. Ecol. Econ. 105, 204–210 (2014).

    Article  Google Scholar 

  44. 44.

    Echeverria, C. et al. Rapid deforestation and fragmentation of Chilean temperate forests. Biol. Conserv. 130, 481–494 (2006).

    Article  Google Scholar 

  45. 45.

    Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J. & Benayas, J. M. R. Monitoring land cover change of the dryland forest landscape of central Chile (1975–2008). Appl. Geogr. 30, 436–447 (2010).

    Article  Google Scholar 

  46. 46.

    Aguayo, M., Pauchard, A., Azócar, G. & Parra, O. Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: entendiendo la dinámica espacial y temporal del paisaje. Rev. Chil. Hist. Nat. 82, 361–374 (2009).

    Article  Google Scholar 

  47. 47.

    Miranda, A., Altamirano, A., Cayuela, L., Lara, A. & González, M. Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg. Environ. Change 17, 285–297 (2017).

    Article  Google Scholar 

  48. 48.

    Nahuelhual, L., Carmona, A., Lara, A., Echeverría, C. & González, M. E. Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landsc. Urban Plan. 107, 12–20 (2012).

    Article  Google Scholar 

  49. 49.

    Holt, T. V., Binford, M. W., Portier, K. M. & Vergara, R. A stand of trees does not a forest make: tree plantations and forest transitions. Land Use Policy 56, 147–157 (2016).

    Article  Google Scholar 

  50. 50.

    Lubowski, R. N. Determinants of Land-Use Transitions in the United States: Econometric Analysis of Changes among the Major Land-Use Categories (Harvard Univ., 2002).

  51. 51.

    Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Marlier, M. E. et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 10, 085005 (2015).

    Article  CAS  Google Scholar 

  53. 53.

    Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).

    Article  Google Scholar 

  54. 54.

    Tasser, E., Sternbach, E. & Tappeiner, U. Biodiversity indicators for sustainability monitoring at municipality level: an example of implementation in an alpine region. Ecol. Indic. 8, 204–223 (2008).

    Article  Google Scholar 

  55. 55.

    Zimmermann, P., Tasser, E., Leitinger, G. & Tappeiner, U. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric. Ecosyst. Environ. 139, 13–22 (2010).

    Article  Google Scholar 

  56. 56.

    Noh, J., Echeverría, C., Pauchard, A. & Cuenca, P. Extinction debt in a biodiversity hotspot: the case of the Chilean winter rainfall-Valdivian forests. Landsc. Ecol. Eng. 15, 1–12 (2019).

    Article  Google Scholar 

  57. 57.

    D.L. 701: Bonificaciones Forestales (CONAF, 2014); https://go.nature.com/2TDIMeD

  58. 58.

    Jack, B. K. & Jayachandran, S. Self-selection into payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 116, 5326–5333 (2019).

    CAS  Article  Google Scholar 

  59. 59.

    ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).

  60. 60.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  61. 61.

    Stata Statistical Software: Release 14 (StataCorp, 2015).

  62. 62.

    Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  63. 63.

    Anuario Forestal (INFOR, 2018).

  64. 64.

    Stavins, R. N. & Jaffe, A. B. Unintended Impacts of public investments on private decisions: the depletion of forested. Wetl. Am. Econ. Rev. 80, 337–352 (1990).

    Google Scholar 

  65. 65.

    Chomitz, K. M. & Gray, D. A. Roads, land use, and deforestation: a spatial model applied to Belize. World Bank Econ. Rev. 10, 487–512 (1996).

    Article  Google Scholar 

  66. 66.

    Lubowski, R. N., Plantinga, A. J. & Stavins, R. N. What drives land-use change in the United States? A national analysis of landowner decisions. Land Econ. 84, 529–550 (2008).

    Article  Google Scholar 

  67. 67.

    McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).

    Article  Google Scholar 

  68. 68.

    Estudio Agrológico de Suelos (CIREN, 2015).

  69. 69.

    Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24, 101–112 (2010).

    Article  Google Scholar 

  70. 70.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    Article  Google Scholar 

  71. 71.

    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).

    Article  Google Scholar 

  72. 72.

    Garrett, R. D., Lambin, E. F. & Naylor, R. L. The new economic geography of land use change: supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 34, 265–275 (2013).

    Article  Google Scholar 

  73. 73.

    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089 (2008).

    CAS  Article  Google Scholar 

  74. 74.

    Blackman, A. Evaluating forest conservation policies in developing countries using remote sensing data: an introduction and practical guide. Policy Econ. 34, 1–16 (2013).

    Article  Google Scholar 

  75. 75.

    Heilmayr, R. & Lambin, E. F. Impacts of nonstate, market-driven governance on Chilean forests. Proc. Natl Acad. Sci. USA 113, 2910–2915 (2016).

    CAS  Article  Google Scholar 

  76. 76.

    Lubowski, R. N., Plantinga, A. J. & Stavins, R. N. Land-use change and carbon sinks: econometric estimation of the carbon sequestration supply function. J. Environ. Econ. Manag. 51, 135–152 (2006).

    Article  Google Scholar 

  77. 77.

    Marlier, M. E. et al. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ. Res. Lett. 10, 054010 (2015).

    Article  Google Scholar 

  78. 78.

    Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1147470, the Robert and Patricia Switzer Foundation and Stanford University’s Emmett Interdisciplinary Program for Environment and Resources. FONDECYT project no. 1181374 funded field sampling of vascular plants. The Argentinean Comisión Nacional de Actividades Espaciales donated several satellite images from its archive. R. Fuentes, E. Tasar and J. Scrivner provided research assistance in support of this project.

Author information

Affiliations

Authors

Contributions

R.H., C.E. and E.F.L. conceived of the research. R.H. and C.E. collected data. R.H. conducted analysis. R.H., C.E. and E.F.L. wrote the manuscript.

Corresponding author

Correspondence to Robert Heilmayr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, references, Fig. 1 and Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heilmayr, R., Echeverría, C. & Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-0547-0

Download citation