Abstract
In response to the important benefits forests provide, there is a growing effort to reforest the world. Past policies and current commitments indicate that many of these forests will be plantations. Since plantations often replace more carbon-rich or biodiverse land covers, this approach to forest expansion may undermine objectives of increased carbon storage and biodiversity. We use an econometric land use change model to simulate the carbon and biodiversity impacts of subsidy driven plantation expansion in Chile between 1986 and 2011. A comparison of simulations with and without subsidies indicates that payments for afforestation increased tree cover through expansion of plantations of exotic species but decreased the area of native forests. Chile’s forest subsidies probably decreased biodiversity without increasing total carbon stored in aboveground biomass. Carefully enforced safeguards on the conversion of natural ecosystems can improve both the carbon and biodiversity outcomes of reforestation policies.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years
Communications Earth & Environment Open Access 06 May 2023
-
Land use and soil characteristics affect soil organisms differently from above-ground assemblages
BMC Ecology and Evolution Open Access 17 November 2022
-
Land use change and carbon emissions of a transformation to timber cities
Nature Communications Open Access 30 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

Data availability
All data needed to replicate our results are available on the Harvard Dataverse at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6RDDQH.
Code availability
All code needed to replicate our results are available on github at https://github.com/rheilmayr/chile_subsidies.
References
Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).
Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Global Forest Resources Assessment (FAO, 2015).
Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
Romijn, E. et al. Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. Forests 10, 510 (2019).
Bull, G. Q. et al. Industrial forest plantation subsidies: impacts and implications. Policy Econ. 9, 13–31 (2006).
Whiteman, A. Money doesn’t grow on trees: a perspective on prospects for making forestry pay. Unasylva 54, 3–10 (2003).
Sedjo, R. A. The role of forest plantations in the world’s future timber supply. For. Chron. 77, 221–225 (2001).
Rudel, T. K. Tree farms: driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 26, 545–550 (2009).
Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).
Straaten, Ovan et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).
Oyarzun, C. E. & Peña, L. Soil erosion and overland flow in forested areas with pine plantations at coastal mountain range, central Chile. Hydrol. Process. 9, 111–118 (1995).
Stephens, S. S. & Wagner, M. R. Forest plantations and biodiversity: a fresh perspective. J. For. 105, 307–313 (2007).
Rittenhouse, C. D. & Rissman, A. R. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use change scenarios. Environ. Sci. Policy 21, 94–105 (2012).
Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).
Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).
Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).
Hua, F. et al. Tree plantations displacing native forests: the nature and drivers of apparent forest recovery on former croplands in southwestern China from 2000 to 2015. Biol. Conserv. 222, 113–124 (2018).
Nelson, E. et al. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proc. Natl Acad. Sci. USA 105, 9471–9476 (2008).
Intended Nationally Determined Contribution of Chile Towards the Climate Agreement of Paris 2015 (Gobierno de Chile, 2015); https://go.nature.com/2LZtVa3
Durán, A. P. & Barbosa, O. Seeing Chile’s forest for the tree plantations. Science 365, 1388–1388 (2019).
Carrizosa, S. et al. Workshop on the Use of Financial Incentives for Industrial Forest Plantations: Proceedings (Inter-American Development Bank, 1995); https://go.nature.com/36AjlzF
Haltia, O. & Keipi, K. Financing Forest investments in Latin America: The Issue of Incentives (Inter-American Development Bank, 1997); https://go.nature.com/2B3H7bL
Hartwig C., F. La Tierra que Recuperamos (Editorial Los Andes, 1994).
Camus, P. Federico Albert: artífice de la gestión de los bosques de Chile. Rev. Geogr. Norte Gd 30, 55–63 (2003).
Clapp, R. A. Creating competitive advantage: forest policy as industrial policy in Chile. Econ. Geogr. 71, 273–296 (1995).
Arnold, F. Sustitución de Bosque Nativo en Chile: destrucción de un valioso patrimonio natural (CODEFF, 1998).
Torey, S. Entrevista: ‘La solución es mejorar el control, no prohibir el uso del bosque’. Ambiente Desarro 33–35 (1994).
Pellet, P. F., Ugarte, E., Osorio, E. M. & Herrera, F. D. Conservación de la biodiversidad en Chile, ¿legalmente suficiente?: La necesidad de cartografiar la ley antes de decidir. Rev. Chil. Hist. Nat. 78, 125–141 (2005).
Informe Consolidado de Sustitucion de Bosque Nativo y Matorral Esclerofilo en el Patrimoniode Arauco (Forestal Arauco, 2012); https://go.nature.com/2M3ndzC
Farias, A. & Vergara, C. Informe Tecnico de Sustitucion de Bosque Nativo y Matorral Arborescente en el Patrimonio de Forestal Arauco S.A. (WWF, 2013); https://go.nature.com/3d5BWpI
Gilabert, H., Meza, F., Cabello, H., Aurtenenchea, M. & Laroze, A. Estimación Del Carbono Capturado En Las Plantaciones de Pino Radiata y Eucaliptos Relacionadas Con El DL 701 de 1974 (ODEPA, 2007).
Niklitschek, M. E. Trade liberalization and land use changes: explaining the expansion of afforested land in Chile. For. Sci. 53, 385–394 (2007).
Evaluación de Impacto, Informe Final: Programa Bonificación Forestal D.L. 701 (Ministerio de Agricultura & CONAF, 2005).
Gonzalez, R. Econometric Modeling of Land-use Changes in Southern Chile (Universidad Austral de Chile, 2010).
Bopp, C., Engler, A., Jara-Rojas, R. & Arriagada, R. Are forest plantation subsidies affecting land use change and off-farm income? A farm-level analysis of Chilean small forest landowners. Land Use Policy 91, 104308 (2019).
Heilmayr, R. Conservation through intensification? The effects of plantations on natural forests. Ecol. Econ. 105, 204–210 (2014).
Echeverria, C. et al. Rapid deforestation and fragmentation of Chilean temperate forests. Biol. Conserv. 130, 481–494 (2006).
Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J. & Benayas, J. M. R. Monitoring land cover change of the dryland forest landscape of central Chile (1975–2008). Appl. Geogr. 30, 436–447 (2010).
Aguayo, M., Pauchard, A., Azócar, G. & Parra, O. Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: entendiendo la dinámica espacial y temporal del paisaje. Rev. Chil. Hist. Nat. 82, 361–374 (2009).
Miranda, A., Altamirano, A., Cayuela, L., Lara, A. & González, M. Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg. Environ. Change 17, 285–297 (2017).
Nahuelhual, L., Carmona, A., Lara, A., Echeverría, C. & González, M. E. Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landsc. Urban Plan. 107, 12–20 (2012).
Holt, T. V., Binford, M. W., Portier, K. M. & Vergara, R. A stand of trees does not a forest make: tree plantations and forest transitions. Land Use Policy 56, 147–157 (2016).
Lubowski, R. N. Determinants of Land-Use Transitions in the United States: Econometric Analysis of Changes among the Major Land-Use Categories (Harvard Univ., 2002).
Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).
Marlier, M. E. et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 10, 085005 (2015).
Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).
Tasser, E., Sternbach, E. & Tappeiner, U. Biodiversity indicators for sustainability monitoring at municipality level: an example of implementation in an alpine region. Ecol. Indic. 8, 204–223 (2008).
Zimmermann, P., Tasser, E., Leitinger, G. & Tappeiner, U. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric. Ecosyst. Environ. 139, 13–22 (2010).
Noh, J., Echeverría, C., Pauchard, A. & Cuenca, P. Extinction debt in a biodiversity hotspot: the case of the Chilean winter rainfall-Valdivian forests. Landsc. Ecol. Eng. 15, 1–12 (2019).
D.L. 701: Bonificaciones Forestales (CONAF, 2014); https://go.nature.com/2TDIMeD
Jack, B. K. & Jayachandran, S. Self-selection into payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 116, 5326–5333 (2019).
ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Stata Statistical Software: Release 14 (StataCorp, 2015).
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Anuario Forestal (INFOR, 2018).
Stavins, R. N. & Jaffe, A. B. Unintended Impacts of public investments on private decisions: the depletion of forested. Wetl. Am. Econ. Rev. 80, 337–352 (1990).
Chomitz, K. M. & Gray, D. A. Roads, land use, and deforestation: a spatial model applied to Belize. World Bank Econ. Rev. 10, 487–512 (1996).
Lubowski, R. N., Plantinga, A. J. & Stavins, R. N. What drives land-use change in the United States? A national analysis of landowner decisions. Land Econ. 84, 529–550 (2008).
McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).
Estudio Agrológico de Suelos (CIREN, 2015).
Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24, 101–112 (2010).
Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).
Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).
Garrett, R. D., Lambin, E. F. & Naylor, R. L. The new economic geography of land use change: supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 34, 265–275 (2013).
Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089 (2008).
Blackman, A. Evaluating forest conservation policies in developing countries using remote sensing data: an introduction and practical guide. Policy Econ. 34, 1–16 (2013).
Heilmayr, R. & Lambin, E. F. Impacts of nonstate, market-driven governance on Chilean forests. Proc. Natl Acad. Sci. USA 113, 2910–2915 (2016).
Lubowski, R. N., Plantinga, A. J. & Stavins, R. N. Land-use change and carbon sinks: econometric estimation of the carbon sequestration supply function. J. Environ. Econ. Manag. 51, 135–152 (2006).
Marlier, M. E. et al. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ. Res. Lett. 10, 054010 (2015).
Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).
Acknowledgements
This research was supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1147470, the Robert and Patricia Switzer Foundation and Stanford University’s Emmett Interdisciplinary Program for Environment and Resources. FONDECYT project no. 1181374 funded field sampling of vascular plants. The Argentinean Comisión Nacional de Actividades Espaciales donated several satellite images from its archive. R. Fuentes, E. Tasar and J. Scrivner provided research assistance in support of this project.
Author information
Authors and Affiliations
Contributions
R.H., C.E. and E.F.L. conceived of the research. R.H. and C.E. collected data. R.H. conducted analysis. R.H., C.E. and E.F.L. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary methods, references, Fig. 1 and Tables 1–4.
Rights and permissions
About this article
Cite this article
Heilmayr, R., Echeverría, C. & Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat Sustain 3, 701–709 (2020). https://doi.org/10.1038/s41893-020-0547-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-020-0547-0
This article is cited by
-
Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years
Communications Earth & Environment (2023)
-
Land use change and carbon emissions of a transformation to timber cities
Nature Communications (2022)
-
The expansion of tree plantations across tropical biomes
Nature Sustainability (2022)
-
Land use and soil characteristics affect soil organisms differently from above-ground assemblages
BMC Ecology and Evolution (2022)
-
Terrestrial ecological restoration in China: identifying advances and gaps
Environmental Sciences Europe (2021)