Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrological limits to carbon capture and storage


Carbon capture and storage (CCS) is a strategy to mitigate climate change by limiting CO2 emissions from point sources such as coal-fired power plants (CFPPs). Although decision-makers are seeking to implement policies regarding CCS, the consequences of this technology on water scarcity have not been fully assessed. Here we simulate the impacts on water resources that would result from retrofitting global CFPPs with four different CCS technologies. We find that 43% of the global CFPP capacity experiences water scarcity for at least one month per year and 32% experiences scarcity for five or more months per year. Although retrofitting CFPPs with CCS would not greatly exacerbate water scarcity, we show that certain geographies lack sufficient water resources to meet the additional water demands of CCS technologies. For CFPPs located in these water-scarce areas, the trade-offs between the climate change mitigation benefits and the increased pressure on water resources of CCS should be weighed. We conclude that CCS should be preferentially deployed at those facilities least impacted by water scarcity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Geospatial distribution of coal-fired plants facing water scarcity in the 2011–2015 period.
Fig. 2: Exposure of CFPPs to water scarcity.
Fig. 3: Water consumption and withdrawal intensities of CFPPs with and without CCS.
Fig. 4: Water consumption and withdrawals of CFPPs with and without CCS.
Fig. 5: Additional water scarcity with amine absorption carbon capture technology.

Data availability

The data used to perform this work can be found in the Supplementary Information and in the reference list. Any further data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Statistical Review of World Energy 2018 (BP, 2018).

  2. 2.

    Tong, D. et al. Targeted emission reductions from global super-polluting power plant units. Nat. Sustain. 1, 59–68 (2018).

    Article  Google Scholar 

  3. 3.

    Oberschelp, C., Pfister, S., Raptis, C. E. & Hellweg, S. Global emission hotspots of coal power generation. Nat. Sustain. 2, 113–121 (2019).

    Article  Google Scholar 

  4. 4.

    Paris Agreement (European Commission, 2015);

  5. 5.

    Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).

    Article  Google Scholar 

  6. 6.

    Pfeiffer, A., Hepburn, C., Vogt-Schilb, A. & Caldecott, B. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement. Environ. Res. Lett. 13, 054019 (2018).

    Article  CAS  Google Scholar 

  7. 7.

    Voisin, N. et al. Vulnerability of the US western electric grid to hydro-climatological conditions: how bad can it get? Energy 115, 1–12 (2016).

    Article  Google Scholar 

  8. 8.

    Webster, M., Donohoo, P. & Palmintier, B. Water–CO2 trade-offs in electricity generation planning. Nat. Clim. Change 3, 1029–1032 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Kyle, P. et al. Influence of climate change mitigation technology on global demands of water for electricity generation. Int. J. Greenhouse Gas Control 13, 112–123 (2013).

    Article  Google Scholar 

  10. 10.

    Byers, E. A., Hall, J. W. & Amezaga, J. M. Electricity generation and cooling water use: UK pathways to 2050. Glob. Environ. Change 25, 16–30 (2014).

    Article  Google Scholar 

  11. 11.

    Liu, L. et al. Water demands for electricity generation in the US: modeling different scenarios for the water–energy nexus. Technol. Forecast. Soc. Change 94, 318–334 (2015).

    Article  Google Scholar 

  12. 12.

    Van Vliet, M. T., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    Article  Google Scholar 

  13. 13.

    World Energy Outlook 2016 (International Energy Agency, 2016).

  14. 14.

    Zhang, X. et al. China’s coal-fired power plants impose pressure on water resources. J. Clean. Prod. 161, 1171–1179 (2017).

    Article  Google Scholar 

  15. 15.

    Miara, A. et al. Climate and water resource change impacts and adaptation potential for US power supply. Nat. Clim. Change 7, 793–798 (2017).

    Article  Google Scholar 

  16. 16.

    Zhang, C., Zhong, L. & Wang, J. Decoupling between water use and thermoelectric power generation growth in China. Nat. Energy 3, 792–799 (2018).

    Article  Google Scholar 

  17. 17.

    Van Vliet, M. T. et al. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2, 676–681 (2012).

    Article  Google Scholar 

  18. 18.

    Turner, S. W. D., Voisin, N., Fazio, J., Hua, D. & Jourabchi, M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat. Commun. 10, 8 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, L., Hejazi, M., Iyer, G. & Forman, B. A. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).

    Article  Google Scholar 

  20. 20.

    Alkon, M. et al. Water security implications of coal-fired power plants financed through China’s Belt and Road Initiative. Energy Policy 132, 1101–1109 (2019).

    Article  Google Scholar 

  21. 21.

    Wang, Y. et al. Vulnerability of existing and planned coal-fired power plants in developing Asia to changes in climate and water resources. Energy Environ. Sci. 12, 3164–3181 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article  Google Scholar 

  23. 23.

    D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article  Google Scholar 

  24. 24.

    Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Cui, R. Y. et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 10, 4759 (2019).

    Article  CAS  Google Scholar 

  26. 26.

    Smit, B., Reimer, J. A., Oldenburg, C. M. & Bourg, I. C. Introduction to Carbon Capture and Sequestration (Imperial College Press, 2014).

  27. 27.

    Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Zhai, H. & Rubin, E. S. Water impacts of a low-carbon electric power future: assessment methodology and status. Curr. Sustain. Renew. Energy Rep. 2, 1–9 (2015).

    Google Scholar 

  29. 29.

    Zhai, H. & Rubin, E. S. Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy 38, 5653–5660 (2010).

    Article  Google Scholar 

  30. 30.

    Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ. Res. Lett. 8, 015031 (2013).

    Article  CAS  Google Scholar 

  31. 31.

    Zhai, H., Rubin, E. S. & Versteeg, P. L. Water use at pulverized coal power plants with post-combustion carbon capture and storage. Environ. Sci. Technol. 45, 2479–2485 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Tidwell, V. C., Malczynski, L. A., Kobos, P. H., Klise, G. T. & Shuster, E. Potential impacts of electric power production utilizing natural gas, renewables and carbon capture and sequestration on US freshwater resources. Environ. Sci. Technol. 47, 8940–8947 (2013).

    CAS  Google Scholar 

  33. 33.

    Talati, S., Zhai, H. & Morgan, M. G. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants. Environ. Sci. Technol. 48, 11769–11776 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Sathre, R. et al. Spatially-explicit water balance implications of carbon capture and sequestration. Environ. Model. Softw. 75, 153–162 (2016).

    Article  Google Scholar 

  35. 35.

    Eldardiry, H. & Habib, E. Carbon capture and sequestration in power generation: review of impacts and opportunities for water sustainability. Energy Sustain. Soc. 8, 6 (2018).

    Article  Google Scholar 

  36. 36.

    Schakel, W., Pfister, S. & Ramírez, A. Exploring the potential impact of implementing carbon capture technologies in fossil fuel power plants on regional European water stress index levels. Int. J. Greenhouse Gas Control 39, 318–328 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Byers, E. A., Hall, J. W., Amezaga, J. M., O’Donnell, G. M. & Leathard, A. Water and climate risks to power generation with carbon capture and storage. Environ. Res. Lett. 11, 024011 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Integrated Environmental Control Model computer code and documentation (IECM, 2009);

  39. 39.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  40. 40.

    Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    Article  Google Scholar 

  42. 42.

    Rosa, L., Rulli, M. C., Davis, K. F. & D’Odorico, P. The water–energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. Earth’s Future 6, 745–756 (2018).

    Article  Google Scholar 

  43. 43.

    Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 104002 (2018).

    Article  CAS  Google Scholar 

  44. 44.

    Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    World Energy Outlook 2015 (International Energy Agency, 2015).

  46. 46.

    Powell, S., Liu, K., Liu, A., Li, W. & Hudson, J. Is China Consuming too Much Water to Make Electricity? (UBS Evidence Lab, 2016);

  47. 47.

    Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).

    Article  Google Scholar 

  48. 48.

    Global Coal Plant Tracker (Global Energy Monitor, accessed 18 April 2020);

  49. 49.

    Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).

    Article  Google Scholar 

  50. 50.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  51. 51.

    Grubert, E. A., Beach, F. C. & Webber, M. E. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity. Environ. Res. Lett. 7, 045801 (2012).

    Article  Google Scholar 

  52. 52.

    Jordaan, S. M., Patterson, L. A. & Anadon, L. D. A spatially-resolved inventory analysis of the water consumed by the coal-to-gas transition of Pennsylvania. J. Clean. Prod. 184, 366–374 (2018).

    Article  Google Scholar 

  53. 53.

    Rosa, L. & D’Odorico, P. The water–energy–food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina. J. Clean. Prod. 207, 743–750 (2019).

    Article  Google Scholar 

  54. 54.

    Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).

    Article  Google Scholar 

  55. 55.

    Wanders, N., van Vliet, M. T., Wada, Y., Bierkens, M. F. & van Beek, L. P. High‐resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).

    Article  Google Scholar 

  56. 56.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).

    Article  Google Scholar 

  58. 58.

    Davidson, C. L., Dooley, J. J. & Dahowski, R. T. Assessing the impacts of future demand for saline groundwater on commercial deployment of CCS in the United States. Energy Procedia 1, 1949–1956 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    Little, M.G. & Jackson, R. B. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environ. Sci. Technol. 44, 9225–9232 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    Zhang, C., Anadon, L. D., Mo, H., Zhao, Z. & Liu, Z. Water–carbon trade-off in China’s coal power industry. Environ. Sci. Technol. 48, 11082–11089 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    Peer, R. A. & Sanders, K. T. The water consequences of a transitioning US power sector. Appl. Energy 210, 613–622 (2018).

    Article  Google Scholar 

  62. 62.

    Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

    Article  Google Scholar 

  63. 63.

    Scanlon, B. R., Duncan, I. & Reedy, R. C. Drought and the water–energy nexus in Texas. Environ. Res. Lett. 8, 045033 (2013).

    Article  Google Scholar 

  64. 64.

    Siegelman, R. L., Milner, P. J., Kim, E. J., Weston, S. C. & Long, J. R. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ. Sci. 12, 2161–2173 (2019).

    CAS  Article  Google Scholar 

  65. 65.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  CAS  Google Scholar 

  66. 66.

    Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl Acad. Sci. USA 116, 11187–11194 (2019).

    Article  CAS  Google Scholar 

  67. 67.

    Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    Sanchez, D. L., Nelson, J. H., Johnston, J., Mileva, A. & Kammen, D. M. Biomass enables the transition to a carbon-negative power system across western North America. Nat. Clim. Change 5, 230–234 (2015).

    CAS  Article  Google Scholar 

  69. 69.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    CAS  Article  Google Scholar 

Download references


L.R. was supported by an Ermenegildo Zegna Founder’s Scholarship and by an AGU Horton Hydrology Research Grant. We thank N. Wanders and E. H. Sutanudjaja (Utrecht University) for sharing input and output files from the PCR-GLOBWB model. We thank D. D. Chiarelli, C. Passera and M. C. Rulli (Politecnico di Milano) for irrigation water consumption data.

Author information




L.R. conceived the study, led the study design, data analysis, data collection and writing; J.A.R., M.S.W. and P.D. assisted with study design and writing.

Corresponding author

Correspondence to Lorenzo Rosa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosa, L., Reimer, J.A., Went, M.S. et al. Hydrological limits to carbon capture and storage. Nat Sustain 3, 658–666 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing