Abstract
Increased educational attainment is a sustainable development priority and has been posited to have benefits for other social and environmental issues, including climate change. However, links between education and climate change risks can involve both synergies and trade-offs, and the balance of these effects remains ambiguous. Increases in educational attainment could lead to faster economic growth and therefore higher emissions, more climate change and higher risks. At the same time, improved attainment would be associated with faster fertility decline in many countries, slower population growth and therefore lower emissions, and would also be likely to reduce vulnerability to climate impacts. We employ a multiregion, multisector model of the world economy, driven with country-specific projections of future population by level of education, to test the net effect of education on emissions and on the Human Development Index (HDI), an indicator that correlates with adaptive capacity to climate impacts. We find that improved educational attainment is associated with a modest net increase in emissions but substantial improvement in the HDI values in developing country regions. Avoiding stalled progress in educational attainment and achieving gains at least consistent with historical trends is especially important in reducing future vulnerability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The samples of census datasets analysed during the current study are publicly available from IPUMS International at https://international.ipums.org/international/. The national sample household survey data analysed for this study are publicly available for Brazil (https://www.ibge.gov.br/estatisticas/sociais/habitacao/9050-pesquisa-de-orcamentos-familiares.html?=&t=downloads), China (https://opendata.pku.edu.cn/dataverse/CFPS?language=en), India (Human Development Survey, https://www.icpsr.umich.edu/icpsrweb/DSDR/studies/36151), Mexico (http://en.www.inegi.org.mx/programas/enigh/tradicional/2005/), South Africa (https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/316) and Uganda (http://microdata.worldbank.org/index.php/catalog/2059), after registering and submitting requests. The national survey data for some countries are available but restrictions apply to the availability of these data, which were used under licence for the current study and so are not publicly available. These include India (National Sample Survey 2004–2005 and 2011–2012, http://www.icssrdataservice.in/datarepository/index.php/) and Indonesia (https://microdata.bps.go.id/mikrodata/index.php/catalog/SUSENAS). While these original full datasets have restrictions on availability, tables of derived results from the original datasets can be provided upon request.
Code availability
The code for the version of the iPETS model used to produce economic and emissions projections for this analysis is available upon request. It will eventually be publicly available at ipetsmodel.com.
References
Smith, W. C., Anderson, E., Salinas, D., Horvatek, R. & Baker, D. P. A meta-analysis of education effects on chronic disease: the causal dynamics of the population education transition curve. Soc. Sci. Med. 127, 29–40 (2015).
Coady, D. & Dizioli, A. Income inequality and education revisited: persistence, endogeneity and heterogeneity. Appl. Econ. 50, 2747–2761 (2018).
Hanmer, L. & Klugman, J. Exploring women’s agency and empowerment in developing countries: where do we stand? Fem. Econ. 22, 237–263 (2016).
Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).
A Guide to SDG Interactions: From Science to Implementation (International Council for Science, 2017).
McCollum, D. L. et al. Connecting the sustainable development goals by their energy inter-linkages. Environ. Res. Lett. 13, 033006 (2018).
Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of sustainable development goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).
Moyer, J. D. & Bohl, D. K. Alternative pathways to human development: assessing trade-offs and synergies in achieving the Sustainable Development Goals. Futures 105, 199–210 (2019).
Gomez-Echeverri, L. Climate and development: enhancing impact through stronger linkages in the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Phil. Trans. R. Soc. A 376, 20160444 (2018).
Oppenheimer, M. et al. in IPCC Climate Change 2014: Impacts, Adaptation and Vulnerability (eds Field, C. B. et al.) 1039–1100 (Cambridge Univ. Press, 2014).
O’Neill, B. C. et al. Global demographic trends and future carbon emissions. Proc. Natl Acad. Sci. USA 107, 17521–17526 (2010).
Crespo Cuaresma, J., Lutz, W. & Sanderson, W. Is the demographic dividend an education dividend? Demography 51, 299–315 (2014).
Lutz, W., Muttarak, R. & Striessnig, E. Universal education is key to enhanced climate adaptation. Science 346, 1061–1062 (2014).
Gall, M. Indices of Social Vulnerability to Natural Hazards: A Comparative Evaluation (Univ. South Carolina, 2007).
Füssel, H.-M. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts (World Bank, 2010); https://openknowledge.worldbank.org/handle/10986/9193
KC, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Ren, X. et al. Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Clim. Change 146, 517–531 (2018).
Ren, X., Lu, Y., O'Neill, B. C. & Weitzel, M. Economic and biophysical impacts on agriculture under 1.5 °C and 2 °C warming. Environ. Res. Lett. 13, 115006 (2018).
Böhringer, C. & Löschel, A. Computable general equilibrium models for sustainability impact assessment: status quo and prospects. Ecol. Econ. 60, 49–64 (2006).
Scrieciu, S. S. The inherent dangers of using computable general equilibrium models as a single integrated modelling framework for sustainability impact assessment. A critical note on Böhringer and Löschel (2006). Ecol. Econ. 60, 678–684 (2007).
Lutz, W. & Skirbekk, V. in World Population & Human Capital in the Twenty-First Century: An Overview (eds Lutz, W. et al.) 14–38 (Oxford Univ. Press, 2014).
IPCC: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 3, 10–15 (2018).
Wiedenhofer, D., Smetschka, B., Akenji, L., Jalas, M. & Haberl, H. Household time use, carbon footprints, and urban form: a review of the potential contributions of everyday living to the 1.5 °C climate target. Curr. Opin. Environ. Sustain. 30, 7–17 (2018).
Duarte, R. et al. Modeling the carbon consequences of pro-environmental consumer behavior. Appl. Energy 184, 1207–1216 (2016).
Dickson, J. R., Hughes, B. B. & Irfan, M. T. Advancing Global Education (Routledge, 2010).
Burke, M., Davis, W. M. & Diffenbaugh, N. S. Large potential reduction in economic damages under UN mitigation targets. Nature 557, 549–553 (2018).
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).
Casey, G. & Galor, O. Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth. Environ. Res. Lett. 12, 014003 (2017).
Bongaarts, J. & O’Neill, B. C. Global warming policy: is population left out in the cold? Science 361, 650–652 (2018).
Jiang, L. & O’Neill, B. C. Global urbanization projections for the shared socioeconomic pathways. Glob. Environ. Change 42, 193–199 (2017).
Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).
Lutz, W. & Kc, S. Global human capital: integrating education and population. Science 333, 587–592 (2011).
KC, S. et al. Projection of populations by level of educational attainment, age, and sex for 120 countries for 2005–2050. Demogr. Res. 22, 383–472 (2010).
KC, S., Potancokova, M., Bauer, R., Goujon, A. & Striessnig, E. in World Population and Human Capital in the Twenty-First Century (eds Lutz, W. et al.) 434–518 (Oxford Univ. Press, 2014).
Cutler, D. & Lleras-Muney, A. in Encyclopedia of Health Economics (ed. Culyer, A. J.) 232–245 (Elsevier, 2014).
Baker, D. P., Leon, J., Smith Greenaway, E. G., Collins, J. & Movit, M. The education effect on population health: a reassessment. Popul. Dev. Rev. 37, 307–332 (2011).
KC, S. & Lentzner, H. The effect of education on adult mortality and disability: a global perspective. Vienna Yearb. Popul. Res. 8, 201–235 (2010).
Rindfuss, R. R., St. John, C. & Bumpass, L. L. Education and the timing of motherhood: disentangling causation. J. Marriage Fam. 46, 981–984 (1984).
Gerster, M., Ejrnæs, M. & Keiding, N. The causal effect of educational attainment on completed fertility for a cohort of Danish women—does feedback play a role? Stat. Biosci. 6, 204–222 (2014).
Kravdal, Ø. Effects of current education on second- and third-birth rates among Norwegian women and men born in 1964: substantive interpretations and methodological issues. Demogr. Res. 17, 211–246 (2007).
Forced Out: Mandatory Pregnancy Testing and the Expulsion of Pregnant Students in Tanzanian Schools (CRR, 2013); https://go.nature.com/2WJOg9J
Bongaarts, J. The causes of educational differences in fertility in Sub-Saharan Africa. Vienna Yearb. Popul. Res. 8, 31–50 (2010).
Clarke, D. Children and their parents: a review of fertility and causality. J. Econ. Surv. 32, 518–540 (2018).
Hoem, J. M. & Kreyenfeld, M. Anticipatory analysis and its alternatives in life-course research. Part 1: the role of education in the study of first childbearing. Demogr. Res. 15, 461–484 (2006).
Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).
Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).
Acknowledgements
We thank the Asian Demographic Research Institute at Shanghai University for hosting research stays for B.C.O. during which parts of this work were carried out. A substantial amount of the work for this study was completed while B.C.O., L.J., E.K.L. and X.R. were at the National Center for Atmospheric Research, Boulder, CO.
Author information
Authors and Affiliations
Contributions
B.C.O. led, and L.J., S.KC and S.P. contributed to, the design of the study. B.C.O. coordinated the paper and led the writing, with contributions from L.J., S.KC, S.P. and E.K.L. L.J., R.F., S.P. and E.K.L. led the analysis of household survey data, with contributions from T.Z. and W.Z. S.KC carried out the population–education projections. L.J. carried out the household projections. X.R. carried out the iPETS model projections, with contributions from B.C.O. B.C.O., L.J., S.KC, S.P., E.K.L. and X.R. interpreted results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods 1–3, Tables 1–4, Figs. 1–4 and references.
Rights and permissions
About this article
Cite this article
O’Neill, B.C., Jiang, L., KC, S. et al. The effect of education on determinants of climate change risks. Nat Sustain 3, 520–528 (2020). https://doi.org/10.1038/s41893-020-0512-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-020-0512-y
This article is cited by
-
Climate change unequally affects nitrogen use and losses in global croplands
Nature Food (2023)
-
Assessing populations exposed to climate change: a focus on Africa in a global context
Population and Environment (2023)
-
Digitalization and its impact on labour market and education. Selected aspects
Education and Information Technologies (2023)
-
Socio-demographic factors shaping the future global health burden from air pollution
Nature Sustainability (2022)
-
Common features of sustainable higher education sector according to an international sustainability ranking data
Sustainability Science (2022)