A global perspective on sustainable intensification research

Abstract

Despite general agreement that meeting food demand without further loss of natural ecosystems requires sustainable intensification, there is little dialogue about the research agenda needed to achieve it. To that end, we evaluate current trajectories towards sustainable intensification, review published research on the topic, identify missing links, and propose a prioritization framework to fill gaps. Although progress towards sustainable intensification is behind schedule, we are optimistic that current trends can get back on course assuming a well-prioritized and adequately funded research portfolio and appropriate policies and institutions to support it.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Price trends of the major cereals from 1980–2018.
Fig. 2: Trends in global harvested area of the major staple food crops and of the four most widely grown crops.
Fig. 3: Yield trends of major food crops.
Fig. 4: Contributions to global supply of major food crops from yield gain on existing crop land (green) or expansion of harvested crop production area (brown) in two periods.

References

  1. 1.

    Pretty, J. & Bharucha, Z. P. Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596 (2014).

    Google Scholar 

  2. 2.

    Cassman, K. G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    CAS  Google Scholar 

  3. 3.

    Godfray, H. C. J. & Garnett, T. Food security and sustainable intensification. Phil. Trans. R. Soc. B 369, 20120273 (2014).

    Google Scholar 

  4. 4.

    Pretty, J. The sustainable intensification of agriculture. Nat. Resour. Forum 21, 247–256 (1997).

    Google Scholar 

  5. 5.

    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    CAS  Google Scholar 

  6. 6.

    Lagi, M., Bertrand, K. Z. & Bar-Yam, Y. The Food Crises and Political Instability in North Africa and the Middle East (SSRN, 2011).

  7. 7.

    Barrett, C. B. in Food Security and Sociopolitical Stability (ed. Barrett, C. B.) 1–34 (Oxford Univ. Press, 2013).

  8. 8.

    Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop yield trends. Nat. Commun. 4, 2918 (2013).

    Google Scholar 

  9. 9.

    Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Google Scholar 

  10. 10.

    Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009).

    CAS  Google Scholar 

  11. 11.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Google Scholar 

  12. 12.

    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–358 (2003).

    Google Scholar 

  13. 13.

    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Google Scholar 

  14. 14.

    Loos, J. et al. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 12, 356–361 (2014).

    Google Scholar 

  15. 15.

    Andrade, J. F. et al. A spatial framework for ex-ante impact assessment of agricultural technologies. Glob. Food Secur. 20, 72–81 (2019).

    Google Scholar 

  16. 16.

    Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).

    Google Scholar 

  17. 17.

    Vanlauwe, B. et al. Sustainable intensification and the African smallholder farmer. Environ. Sustain. 8, 15–22 (2014).

    Google Scholar 

  18. 18.

    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).

    Google Scholar 

  19. 19.

    Mabhaudhi, T. et al. Mainstreaming underutilized indigenous and traditional crops into food systems: a South African perspective. Sustainability 11, 172 (2019).

    Google Scholar 

  20. 20.

    Barnes, A. P. & Thompson, S. T. Measuring progress towards sustainable intensification: how far can secondary data go? Ecol. Indic. 36, 213–220 (2014).

    Google Scholar 

  21. 21.

    Gadanakis, Y., Bennett, R., Park, J. & Areal, F. J. Evaluating the sustainable intensification of arable farms. J. Environ. Manag. 150, 288–298 (2015).

    Google Scholar 

  22. 22.

    Smith, A. et al. Measuring sustainable intensification in smallholder agroecosystems: a review. Glob. Food Secur. 12, 127–138 (2017).

    Google Scholar 

  23. 23.

    Thomson, A. M. et al. Science in the supply chain: collaboration opportunities for advancing sustainable agriculture. Agric. Environ. Lett. 2, 170015 (2017).

    Google Scholar 

  24. 24.

    Snapp, S. S. et al. Maize yield and profitability tradeoffs with social, human and environmental performance: is sustainable intensification feasible? Agric. Syst. 162, 77–88 (2018).

    Google Scholar 

  25. 25.

    Andrade, J. F., Poggio, S. L., Ermacora, M. & Satorre, E. H. Land use intensification in the Rolling Pampa, Argentina: diversifying crop sequences to increase grain yields and resource use. Eur. J. Agron. 82, 1–10 (2017).

    Google Scholar 

  26. 26.

    Guilpart, N., Grassini, P., Sadras, V. O., Timsina, J. & Cassman, K. G. Estimating yield gaps at the cropping system level. Field Crops Res. 206, 21–32 (2017).

    Google Scholar 

  27. 27.

    Hall, A. J. & Richards, R. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 143, 18–33 (2013).

    Google Scholar 

  28. 28.

    Cassman, K. G. Long-Term Trajectories: Crop Yields, Farmland, and Irrigated Agriculture 21–46 (Federal Reserve Bank of Kansas City Economic Review, Special Issue, 2016).

  29. 29.

    Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–204 (2014).

    CAS  Google Scholar 

  30. 30.

    Kucharik, C. J. Contribution of planting date trends to increased maize yields in the central United States. Agron. J. 100, 328–336 (2008).

    Google Scholar 

  31. 31.

    Sacks, W. J. & Kucharik, C. J. Crop management and phenology trends in the U.S. Corn Belt: impacts on yields, evapotranspiration and energy balance. Agric. For. Meteorol. 151, 882–894 (2011).

    Google Scholar 

  32. 32.

    McLellan, E. et al. Reducing nitrogen export from the Corn Belt to the Gulf of Mexico: agricultural strategies for remediating hypoxia. J. Am. Water Resour. Assoc. 51, 263–289 (2015).

    CAS  Google Scholar 

  33. 33.

    Keating, B. A., Herrero, M., Carberry, P. S., Gardner, J. & Cole, M. B. Food wedges: framing the global food demand and supply challenge towards 2050. Glob. Food Secur. 3, 125–132 (2014).

    Google Scholar 

  34. 34.

    van Ittersum, M. K. et al. Yield gap analysis with local to global relevance – a review. Field Crops Res. 143, 4–17 (2013).

    Google Scholar 

  35. 35.

    Grassini, P. et al. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 177, 49–63 (2015).

    Google Scholar 

  36. 36.

    van Bussel, L. G. J. et al. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Res. 177, 98–108 (2015).

    Google Scholar 

  37. 37.

    van Ittersum, M. K. et al. Can Sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 113, 14964–14969 (2016).

    Google Scholar 

  38. 38.

    Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).

    Google Scholar 

  39. 39.

    World Population Prospects (United Nations Division of Economics and Social Affairs, 2019).

  40. 40.

    The 2018 Revision of the World Urbanization Prospects (United Nations Division of Economics and Social Affairs, 2018).

  41. 41.

    Guilpart, N. et al. Rooting for food security in Sub-Saharan Africa. Environ. Res. Lett. 12, 114036 (2017).

    Google Scholar 

  42. 42.

    MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. É. Ó. & Taylor, R. G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 7, 021003 (2012).

    Google Scholar 

  43. 43.

    Cassman, K. G. & Grassini, P. Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production? Glob. Food Secur. 2, 203–209 (2013).

    Google Scholar 

  44. 44.

    McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. BioScience 68, 194–203 (2018).

    Google Scholar 

  45. 45.

    Passioura, J. Increasing crop productivity when water is scarce—from breeding to field management. Agric. Water Manage. 80, 176–196 (2006).

    Google Scholar 

  46. 46.

    Grassini, P. et al. High-yield irrigated maize in the Western U.S. Corn Belt: II. Irrigation management and crop water productivity. Field Crops Res. 120, 133–144 (2011).

    Google Scholar 

  47. 47.

    Rattalino Edreira, J. I. et al. Beyond the plot: technology extrapolation domains for scaling out agronomic science. Environ. Res. Lett. 13, 054027 (2018).

    Google Scholar 

  48. 48.

    Rattalino Edreira, J. I. et al. Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agric. For. Meteorol. 247, 170–180 (2018).

    Google Scholar 

  49. 49.

    Mourtzinis, S. et al. Sifting and winnowing: analysis of farmer field data for soybean in the US North-Central region. Field Crops Res. 221, 130–141 (2018).

    Google Scholar 

  50. 50.

    Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 3, 92–98 (2014).

    Google Scholar 

  51. 51.

    Phalan, B. How can higher-yield farming help to spare nature? Science 351, 450–451 (2016).

    CAS  Google Scholar 

  52. 52.

    Commodity Markets (World Bank); https://go.nature.com/39QAzJQ

  53. 53.

    FAOSTAT: Crops (FAO); http://www.fao.org/faostat/en/#data/QC

Download references

Author information

Affiliations

Authors

Contributions

The subject-matter outline of the Perspective was developed by K.G.C. and figures were prepared by P.G. Writing and editing were performed by K.G.C. and P.G.

Corresponding author

Correspondence to Kenneth G. Cassman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cassman, K.G., Grassini, P. A global perspective on sustainable intensification research. Nat Sustain 3, 262–268 (2020). https://doi.org/10.1038/s41893-020-0507-8

Download citation