Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Economic development and converging household carbon footprints in China

Abstract

There are substantial differences in carbon footprints across households. This study applied an environmentally extended multiregional input–output approach to estimate household carbon footprints for 12 different income groups of China’s 30 regions. Subsequently, carbon footprint Gini coefficients were calculated to measure carbon inequality for households across provinces. We found that the top 5% of income earners were responsible for 17% of the national household carbon footprint in 2012, while the bottom half of income earners caused only 25%. Carbon inequality declined with economic growth in China across space and time in two ways: first, carbon footprints showed greater convergence in the wealthier coastal regions than in the poorer inland regions; second, China’s national carbon footprint Gini coefficients declined from 0.44 in 2007 to 0.37 in 2012. We argue that economic growth not only increases income levels but also contributes to an overall reduction in carbon inequality in China.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Per capita carbon footprints of 30 of China’s provinces.
Fig. 2: The per capita carbon footprints of 12 income groups for 30 of China’s provinces in 2012.
Fig. 3: CF-Gini coefficients and per capita carbon footprints of different income groups for 30 provinces.
Fig. 4: Total, rural and urban CF-Gini and income Gini coefficients in China.

Data availability

The 2012 China MRIO table is compiled by Mi et al.31 (https://doi.org/10.6084/m9.figshare.c.4064285), and global MRIO tables are from the GTAP database (https://www.gtap.agecon.purdue.edu/). Carbon emission inventories can be sourced from the China Emission Accounts and Datasets (http://www.ceads.net/)50. The data that support the findings of this study are available from the corresponding authors upon request.

Code availability

Requests for code developed in Matlab to process and analyse the primary data collected in this study will be reviewed and made available upon reasonable request.

References

  1. 1.

    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    CAS  Google Scholar 

  2. 2.

    Minx, J. et al. Carbon footprints of cities and other human settlements in the UK. Environ. Res. Lett. 8, 035039 (2013).

    Google Scholar 

  3. 3.

    López, L.-A., Cadarso, M.-Á., Zafrilla, J. & Arce, G. The carbon footprint of the US multinationals’ foreign affiliates. Nat. Commun. 10, 1672 (2019).

    Google Scholar 

  4. 4.

    Wiedenhofer, D. et al. Unequal household carbon footprints in China. Nat. Clim. Change 7, 75–80 (2017).

    CAS  Google Scholar 

  5. 5.

    Chakravarty, S. et al. Sharing global CO2 emission reductions among one billion high emitters. Proc. Natl Acad. Sci. USA 106, 11884–11888 (2009).

    CAS  Google Scholar 

  6. 6.

    Moran, D. et al. Carbon footprints of 13 000 cities. Environ. Res. Lett. 13, 064041 (2018).

    Google Scholar 

  7. 7.

    Chapman, A., Fujii, H. & Managi, S. Multinational life satisfaction, perceived inequality and energy affordability. Nat. Sustain. 2, 508–514 (2019).

    Google Scholar 

  8. 8.

    Vogt-Schilb, A. et al. Cash transfers for pro-poor carbon taxes in Latin America and the Caribbean. Nat. Sustain. 2, 941–948 (2019).

    Google Scholar 

  9. 9.

    Du, Y. & Takeuchi, K. Can climate mitigation help the poor? Measuring impacts of the CDM in rural China. J. Environ. Econ. Manag. 95, 178–197 (2019).

    Google Scholar 

  10. 10.

    Feng, K., Hubacek, K., Liu, Y., Marchán, E. & Vogt-Schilb, A. Managing the distributional effects of energy taxes and subsidy removal in Latin America and the Caribbean. Appl. Energy 225, 424–436 (2018).

    Google Scholar 

  11. 11.

    Hubacek, K., Baiocchi, G., Feng, K. & Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 8, 912 (2017).

    Google Scholar 

  12. 12.

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C.Nature 458, 1158–1162 (2009).

    CAS  Google Scholar 

  13. 13.

    Lusseau, D. & Mancini, F. Income-based variation in sustainable development goal interaction networks. Nat. Sustain. 2, 242–247 (2019).

    Google Scholar 

  14. 14.

    Otto, I. M., Kim, K. M., Dubrovsky, N. & Lucht, W. Shift the focus from the super-poor to the super-rich. Nat. Clim. Change 9, 82–84 (2019).

    Google Scholar 

  15. 15.

    The 13th Five Year Plan (The State Council of the People’s Republic of China, 2016).

  16. 16.

    Coady, D., Parry, I. W. & Shang, B. Energy price reform: lessons for policymakers. Rev. Environ. Econ. Policy 12, 197–219 (2018).

    Google Scholar 

  17. 17.

    Rentschler, J. & Bazilian, M. Policy monitor—principles for designing effective fossil fuel subsidy reforms. Rev. Environ. Econ. Policy 11, 138–155 (2017).

    Google Scholar 

  18. 18.

    Skovgaard, J. & van Asselt, H. The Politics of Fossil Fuel Subsidies and Their Reform (Cambridge Univ. Press, 2018).

  19. 19.

    Wang, Q. et al. Distributional impact of carbon pricing in Chinese provinces. Energy Econ. 81, 327–340 (2019).

    Google Scholar 

  20. 20.

    Remuzgo, L. & Sarabia, J. M. International inequality in CO2 emissions: a new factorial decomposition based on Kaya factors. Environ. Sci. Policy 54, 15–24 (2015).

    CAS  Google Scholar 

  21. 21.

    Jorgenson, A., Schor, J. & Huang, X. Income inequality and carbon emissions in the United States: a state-level analysis, 1997–2012. Ecol. Econ. 134, 40–48 (2017).

    Google Scholar 

  22. 22.

    Zhang, J., Yu, B. & Wei, Y.-M. Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces. Appl. Energy 229, 236–252 (2018).

    Google Scholar 

  23. 23.

    Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2, 361–369 (2017).

    Google Scholar 

  24. 24.

    López, L. A., Arce, G., Morenate, M. & Monsalve, F. Assessing the Inequality of Spanish Households through the carbon footprint: the 21st century Great Recession effect. J. Ind. Ecol. 20, 571–581 (2016).

    Google Scholar 

  25. 25.

    Fang, D. et al. Clean air for some: unintended spillover effects of regional air pollution policies. Sci. Adv. 5, eaav4707 (2019).

    CAS  Google Scholar 

  26. 26.

    Weber, C. L. & Matthews, H. S. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 66, 379–391 (2008).

    Google Scholar 

  27. 27.

    Jones, C. M. & Kammen, D. M. Quantifying carbon footprint reduction opportunities for US households and communities. Environ. Sci. Technol. 45, 4088–4095 (2011).

    CAS  Google Scholar 

  28. 28.

    Gill, B. & Moeller, S. GHG emissions and the rural–urban divide. A carbon footprint analysis based on the German official income and expenditure survey. Ecol. Econ. 145, 160–169 (2018).

    Google Scholar 

  29. 29.

    Zheng, J. et al. Regional development and carbon emissions in China. Energy Econ. 81, 25–36 (2019).

    Google Scholar 

  30. 30.

    Per Capita Income Gini Coefficients 2003–2016 (NBSC, 2017).

  31. 31.

    Mi, Z. et al. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017).

    Google Scholar 

  32. 32.

    GTAP Data Bases: GTAP 9 Data Base Documentation (Global Trade Analysis Project, 2015); https://go.nature.com/2TNr5d2

  33. 33.

    Handbook of Input-Output Table Compilation and Analysis (United Nations Statistical Division (UNSD), 1999); https://go.nature.com/3cVlCs5

  34. 34.

    Aguiar, A., Narayanan, B. & McDougall, R. An overview of the GTAP 9 data base. J. Glob. Economic Anal. 1, 181–208 (2016).

    Google Scholar 

  35. 35.

    Cadarso, M.-Á., Monsalve, F. & Arce, G. Emissions burden shifting in global value chains—winners and losers under multi-regional versus bilateral accounting. Econ. Syst. Res 30, 439–461 (2018).

    Google Scholar 

  36. 36.

    Wei, Y.-M., Liu, L.-C., Fan, Y. & Wu, G. The impact of lifestyle on energy use and CO2 emission: an empirical analysis of China’s residents. Energy Policy 35, 247–257 (2007).

    Google Scholar 

  37. 37.

    Gini, C. Measurement of inequality of incomes. Econ. J. 31, 124–126 (1921).

    Google Scholar 

  38. 38.

    Alvaredo, F. A note on the relationship between top income shares and the Gini coefficient. Econ. Lett. 110, 274–277 (2011).

    Google Scholar 

  39. 39.

    Wu, S., Zheng, X. & Wei, C. Measurement of inequality using household energy consumption data in rural China. Nat. Energy 2, 795–803 (2017).

    Google Scholar 

  40. 40.

    Xie, Y. & Zhou, X. Income inequality in today’s China. Proc. Natl Acad. Sci. USA 111, 6928–6933 (2014).

    CAS  Google Scholar 

  41. 41.

    National Bureau of Statistics China Statistical Yearbook 2016 (China Statistics Press, 2016).

  42. 42.

    The 2012 Poverty Alleviation and Development (The State Council Leading Group Office of Poverty Alleviation and Development, 2012).

  43. 43.

    Provisions on Statistically Dividing Urban and Rural Areas (NBSC, 2018).

  44. 44.

    Liu, W., et al. Theory and Practice of Compiling China 30-Province Inter-Regional Input-Output Table of 2007 (China Statistics Press, 2012).

  45. 45.

    Liu, W., Tang, Z., Chen, J. & Yang, B. China 30-Province Inter-Regional Input–Output Table of 2010 (China Statistics Press, 2014).

  46. 46.

    National Accounts Main Aggregates Database (UNSD, 2016).

  47. 47.

    National Bureau of Statistics China Energy Statistical Yearbook 2015 (China Statistics Press, 2015).

  48. 48.

    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    CAS  Google Scholar 

  49. 49.

    Mi, Z. et al. A multi-regional input–output table mapping China’s economic outputs and interdependencies in 2012. Sci. Data 5, 180155 (2018).

    Google Scholar 

  50. 50.

    Emission Inventories by Sectoral Approach (China Emission Accounts and Datasets (CEADs), 2019); https://go.nature.com/2TKDKxk

  51. 51.

    Min, J. & Rao, N. D. Estimating uncertainty in household energy footprints. J. Ind. Ecol. 22, 1307–1317 (2018).

    Google Scholar 

  52. 52.

    Dietzenbacher, E. Multiplier estimates: to bias or not to bias? J. Reg. Sci. 46, 773–786 (2006).

    Google Scholar 

  53. 53.

    Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    CAS  Google Scholar 

  54. 54.

    Rodrigues, Jo. F., Moran, D., Wood, R. & Behrens, P. Uncertainty of consumption-based carbon accounts. Environ. Sci. Technol. 52, 7577–7586 (2018).

    CAS  Google Scholar 

  55. 55.

    Owen, A., Steen-Olsen, K., Barrett, J., Wiedmann, T. & Lenzen, M. A structural decomposition approach to comparing MRIO databases. Econ. Syst. Res. 26, 262–283 (2014).

    Google Scholar 

Download references

Acknowledgements

This study was supported by National Key R&D Program of China (2016YFA0602603), the National Natural Science Foundation of China (71521002, 71642004, 71874014, 71761137001).

Author information

Affiliations

Authors

Contributions

Z.M. designed the study and preformed calculations. Z.M. and J.Z. prepared the manuscript. J.O. and J.M. collected data on household expenditure and carbon emissions. All authors (Z.M., J.Z., J.M., J.O., K.H., Z.L., D.C., N.S., S.L. and Y.-M.W.) participated in performing the analysis and contributed to writing the manuscript. Y.-M.W. coordinated and supervised the project.

Corresponding authors

Correspondence to Zhifu Mi or Jing Meng or Yi-Ming Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Information

Supplementary Tables 1–12, Figs. 1–3 and refs. 1–4.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Zheng, J., Meng, J. et al. Economic development and converging household carbon footprints in China. Nat Sustain 3, 529–537 (2020). https://doi.org/10.1038/s41893-020-0504-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing