Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon


The Amazon Basin is Brazil’s next frontier for hydropower, but alterations to the water cycle from climate change and deforestation could affect river flows fuelling electricity generation. This research investigated the effects of global and regional changes to the largest network of planned and existing dams within a single basin in the Amazon (the Tapajόs River), which altogether accounts for nearly 50% of the inventoried potential expansion in Brazil. Future hydrological conditions could delay the period of maximum daily generation by 22–29 d, worsening the mismatch between seasonal electricity supply and peak demand. Overall, climate change could decrease dry season hydropower potential by 430–312 GWh per month (−7.4 to −5.4%), while combined effects of deforestation could increase interannual variability from 548 to 713–926 GWh per month (+50% to +69%). Incorporating future change and coordinating dam operations should be a premise in energy planning that could help develop more resilient energy portfolios.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The inventoried capacity of 37 existing and planned dams in the Tapajós basin could be 29.4 GW, equivalent to 27% of Brazil’s current installed capacity.
Fig. 2: Climate change could drive a >1-month shift in the seasonal peak of daily electricity generation of dams in the Tapajós basin, which will have implications for Brazil’s energy planning.
Fig. 3: Electricity generation during the minimum month per year is expected to decrease in magnitude and increase in variability.
Fig. 4: Understanding the future performance of individual dams can help to identify vulnerable projects that may not meet their expected contribution to the national electricity grid.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    International Energy Outlook 2016 (US Energy Information Administration, 2016).

  2. 2.

    Hydropower Status Report 41 (IHA, 2016);

  3. 3.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Poff, N. L., Olden, J. D., Merritt, D. M. & Pepin, D. M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl Acad. Sci. USA 104, 5732–5737 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Anderson, E. P. et al. Understanding rivers and their social relations: a critical step to advance environmental water management. WIREs Water 6, e1381 (2019).

    Article  Google Scholar 

  6. 6.

    Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

  7. 7.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Article  Google Scholar 

  9. 9.

    Arias, M. E. et al. Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Modell. 272, 252–263 (2014).

    Article  Google Scholar 

  10. 10.

    Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes–Amazon connectivity. PLoS ONE 7, e35126 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Piman, T., Cochrane, T. A. & Arias, M. E. Effect of proposed large dams on water flows and hydropower production in the Sekong, Sesan and Srepok Rivers of the Mekong Basin. River Res. Appl. 32, 2095–2108 (2016).

  12. 12.

    Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104 (2018).

    Article  Google Scholar 

  13. 13.

    Ziv, G., Baran, E., Nam, S., Rodriguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong river basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).

    Article  Google Scholar 

  15. 15.

    Coe, M. T. et al. Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philos. Trans. R. Soc. B 368, 20120155 (2013).

    Article  Google Scholar 

  16. 16.

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. USA 112, 13172–13177 (2015).

  18. 18.

    Farinosi, F. et al. Future climate and land use change impacts on river flows in the Tapajós basin in the Brazilian Amazon. Earth’s Future 7, 993–1017 (2019).

    Article  Google Scholar 

  19. 19.

    Sorribas, M. V. et al. Projections of climate change effects on discharge and inundation in the Amazon basin. Clim. Change 136, 555–570 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Zhang, K. et al. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2 and land-use. Glob. Change Biol. 21, 2569–2587 (2015).

    Article  Google Scholar 

  21. 21.

    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Energy Resources Potential in the 2050 Horizon (EPE, 2018);

  24. 24.

    Operational Capacity Factor (Itaipu Bionacional, 2019);

  25. 25.

    Marengo, J. A. et al. Changes in climate and land use over the Amazon Region: current and future variability and trends. Frontiers in Earth Science 6, 228 (2018).

  26. 26.

    Outlook and Perspective on Regional Energy Integration (EPE, 2018);

  27. 27.

    Escobar, H. Drought triggers alarms in Brazil’s biggest metropolis. Science 347, 812–812 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Guimberteau, M. et al. Impacts of future deforestation and climate change on the hydrology of the Amazon basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. 21, 1455–1475 (2017).

    Article  Google Scholar 

  30. 30.

    Arias, M. E., Lee, E., Farinosi, F., Pereira, F. F. & Moorcroft, P. R. Decoupling the effects of deforestation and climate variability in the Tapajós river basin in the Brazilian Amazon. Hydrol. Process. 32, 1648–1663 (2018).

    Article  Google Scholar 

  31. 31.

    World Commission on Dams Dams and Development. A New Framework for Decision-Making (Earthscan Publications, 2000).

  32. 32.

    Kareiva, P. M. Dam choices: analyses for multiple needs. Proc. Natl Acad. Sci. USA 109, 5553–5554 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Ray, P. A. & Brown, C. M. Confronting Climate Uncertainty in Water Resources Planning and Project Design: The Decision Tree Framework (World Bank, 2015).

  34. 34.

    Hydropower Climate Resilience Guide (IHA, 2019);

  35. 35.

    Poff, N. L. & Olden, J. D. Can dams be designed for sustainability? Science 358, 1252–1253 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053 (2017).

    Article  Google Scholar 

  37. 37.

    Jager, H. I. & Smith, B. T. Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values? River Res. Appl. 24, 340–352 (2008).

    Article  Google Scholar 

  38. 38.

    Water Resources Strategic Plan of the Right Margin of the Amazon River (ANA, 2011).

  39. 39.

    Freshwater Ecoregions Of the World: Tapajos–Juruena (WWF/TNC, 2013);

  40. 40.

    Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr. 71, 557–586 (2001).

    Article  Google Scholar 

  41. 41.

    Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y. & Moorcroft, P. R. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J. Geophys. Res. 114, G01002 (2009).

    Article  Google Scholar 

  42. 42.

    Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Pereira, F. F. et al. Technical note: a hydrological routing scheme for the ecosystem demography model (ED2+R) tested in the Tapajós river basin in the Brazilian Amazon. Hydrol. Earth Syst. Sci. 21, 4629 (2017).

    Article  Google Scholar 

  44. 44.

    Piman, T., Cochrane, T. A., Arias, M. E., Green, A. & Dat, N. D. Assessment of flow changes from hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong Basin. J. Water Resour. Plann. Manag. 139, 723–732 (2012).

    Article  Google Scholar 

  45. 45.

    Good, P., Jones, C., Lowe, J., Betts, R. & Gedney, N. Comparing tropical forest projections from two generations of Hadley Centre Earth System models, HadGEM2-ES and HadCM3LC. J. Clim. 26, 495–511 (2013).

    Article  Google Scholar 

  46. 46.

    Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. 118, 1716–1733 (2013).

    Google Scholar 

  47. 47.

    Hurtt, G. C. et al. The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob. Change Biol. 12, 1208–1229 (2006).

    Article  Google Scholar 

  48. 48.

    Soares-Filho, B. S. et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Swann, A. L. S., Longo, M., Knox, R. G., Lee, E. & Moorcroft, P. R. Future deforestation in the Amazon and consequences for South American climate. Agric. Meteorol. 214–215, 12–24 (2015).

    Article  Google Scholar 

  50. 50.

    Longo, M. et al. The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America. Geosci. Model Dev. 12, 4347–4374 (2019).

    Article  Google Scholar 

  51. 51.

    Carl, B. HEC-PRM Prescriptive Reservoir Model User’s Manual (US Army Corp of Engineers, 2003);

  52. 52.

    DiMiceli, C. M. et al. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250m Spatial Resolution for Data Years Beginning Day 65, 2000–2010 Collection 5: Percent Tree Cover (Univ. Maryland, 2011).

  53. 53.

    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  Google Scholar 

  54. 54.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

Download references


This work was initiated while M.E.A., E.L., F.F. and A.L. were Giorgio Ruffolo Fellows in the Sustainability Science Program at Harvard University. Support from Italy’s Ministry for Environment, Land and Sea is gratefully acknowledged. F.F. was also funded through a doctoral scholarship by the Ca’ Foscari University of Venice. The authors dedicate this study to the late Professor John Briscoe (1948–2014), who envisioned and co-led the Amazon Initiative of Harvard’s Sustainability Science Program.

Author information




M.E.A., F.F., P.R.M. and J.B. designed the study. M.E.A. and F.F. collected and compiled the data. F.F., E.L. and M.E.A. designed the experiments and ran computer simulations. M.E.A. and F.F. carried out the data analysis. M.E.A. prepared all figures. M.E.A., F.F., E.L., A.L. and P.R.M. wrote the paper.

Corresponding author

Correspondence to Mauricio E. Arias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–3 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arias, M.E., Farinosi, F., Lee, E. et al. Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nat Sustain 3, 430–436 (2020).

Download citation

Further reading