Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene oxide nanofiltration membranes for desalination under realistic conditions


The demands of clean water production and wastewater recycling continue to drive nanofiltration membrane development. Graphene oxide (GO) membranes have exhibited the potential to revolutionize nanofiltration, but sustaining high solute rejections at realistic concentrations remains a major challenge. Here we show that a series of membranes based on GO bound to polycyclic π-conjugated cations such as toluidine blue O show substantially enhanced rejections for salts and neutral solutes over a wide concentration range. The observed solute rejection behaviours in these π-intercalated GO membranes can be understood by a dual mechanism of interlayer spacing modulation and creation of diffusion barriers in the two-dimensional interlayer galleries. These membranes are easily scalable and possess good chemical and mechanical robustness in desalination of a multicomponent industrial stream at elevated pH, temperature, stream velocity and solids content.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characteristics of the GO–TBO membranes.
Fig. 2: Schematic microstructures of GO–TBO membranes.
Fig. 3: Rejections of the GO–TBO membranes.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. Raw instrumental characterization data (X-ray diffraction, UV-vis and fluorescence spectra) are shown graphically. The numerical versions of these data are available from the corresponding author upon request.


  1. 1.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  CAS  Google Scholar 

  2. 2.

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Homaeigohar, S. & Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 9, e427 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Rashidi, F., Kevlich, N. S., Sinquefield, S. A., Shofner, M. L. & Nair, S. Graphene oxide membranes in extreme operating environments: concentration of Kraft black liquor by lignin retention. ACS Sustain. Chem. Eng. 5, 1002–1009 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Wang, Z., Ma, C., Sinquefield, S. A., Shofner, M. L. & Nair, S. High-Performance graphene oxide nanofiltration membranes for black liquor concentration. ACS Sustain. Chem. Eng. 7, 14915–14923 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Akbari, A. et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Han, Y., Jiang, Y. & Gao, C. High-Flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Yuan, S. et al. Minimizing non-selective nanowrinkles of reduced graphene oxide laminar membranes for enhanced NaCl rejection. Environ. Sci. Technol. Lett. 7, 273–279 (2020).

    Article  CAS  Google Scholar 

  15. 15.

    Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988).

    CAS  Article  Google Scholar 

  17. 17.

    Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Yang, J. et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv. Mater. 30, 1705775 (2018).

    Article  CAS  Google Scholar 

  20. 20.

    Xu, X.-L. et al. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection. ACS Appl. Mater. Interfaces 8, 12588–12593 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Jia, Z., Wang, Y., Shi, W. & Wang, J. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation. J. Membr. Sci. 520, 139–144 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    El-Kady, M. F., Shao, Y. & Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Sun, P., Wang, K. & Zhu, H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Childress, A. E. & Elimelech, M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Membr. Sci. 119, 253–268 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    Bartels, C., Franks, R., Rybar, S., Schierach, M. & Wilf, M. The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 184, 185–195 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    Wu, Y., Tam, N. F. Y. & Wong, M. H. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Mar. Pollut. Bull. 57, 727–734 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Konkena, B. & Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 3, 867–872 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Xu, Y. et al. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 131, 13490–13497 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Matassa, R., Sadun, C., D’Ilario, L., Martinelli, A. & Caminiti, R. Supramolecular organization of toluidine blue dye in solid amorphous phases. J. Phys. Chem. B 111, 1994–1999 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    D’Ilario, L. & Martinelli, A. Toluidine blue: aggregation properties and structural aspects. Model. Simul. Mater. Sci. Eng. 14, 581–595 (2006).

    Article  CAS  Google Scholar 

  33. 33.

    Zhang, M. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).

    Article  CAS  Google Scholar 

  34. 34.

    Chen, X., Qiu, M., Ding, H., Fu, K. & Fan, Y. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8, 5696–5705 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Wei, Y. et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Hung, W.-S. et al. Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J. Mater. Chem. A 6, 19445–19454 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Li, W., Wu, W. & Li, Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano 12, 9309–9317 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Zhang, Z. et al. Interfacial force-assisted in-situ fabrication of graphene oxide membrane for desalination. ACS Appl. Mater. Interfaces 10, 27205–27214 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Li, Y. et al. Thermally reduced nanoporous graphene oxide membrane for desalination. Environ. Sci. Technol. 53, 8314–8323 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Rajesh, S. & Bose, A. B. Development of graphene oxide framework membranes via the “from” and “to” cross-linking approach for ion-selective separations. ACS Appl. Mater. Interfaces 11, 27706–27716 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Chen, L. et al. A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem. Eng. J. 345, 536–544 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Jimbo, T., Tanioka, A. & Minoura, N. Pore-surface characterization of poly(acrylonitrile) membrane having amphoteric charge groups by means of zeta potential measurement. Colloids Surf. A 159, 459–466 (1999).

    CAS  Article  Google Scholar 

  43. 43.

    Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Kevlich, N. S., Shofner, M. L. & Nair, S. Membranes for Kraft black liquor concentration and chemical recovery: current progress, challenges, and opportunities. Sep. Sci. Technol. 52, 1070–1094 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain 3, 296–302 (2020).

    Article  Google Scholar 

  46. 46.

    Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Thomas, T. E., Aani, S. A., Oatley-Radcliffe, D. L., Williams, P. M. & Hilal, N. Laser Doppler electrophoresis and electro-osmotic flow mapping: a novel methodology for the determination of membrane surface zeta potential. J. Membr. Sci. 523, 524–532 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Masuko, T. et al. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).

    CAS  Article  Google Scholar 

Download references


We acknowledge the following individuals at Georgia Tech: E. Reichmanis and Y. Deng for instrumentation access; N. Hooshmand, A. Korde and S. Liang for useful discussions. We acknowledge financial support by the DOE-RAPID Institute (#DE-EE0007888-7-5) and an industrial consortium comprising Georgia-Pacific, International Paper, SAPPI and WestRock. Z.W. acknowledges the additional support from the Georgia Tech Renewable Bioproducts Institute for a PhD Fellowship. XRD, XPS and SEM characterizations were performed at the Georgia Tech Institute for Electronics and Nanotechnology, home to one of the 16 sites of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (grant no. ECCS-1542174).

Author information




S.N., Z.W. and M.L.S. conceived this work. Z.W., C.M., S.A.S. and C.X. designed and conducted synthesis, structure characterization and membrane coupon permeation experiments. C.M. and S.A.S. performed membrane size scale-up and crossflow measurements. All authors participated in the interpretation of data and in writing of this manuscript.

Corresponding author

Correspondence to Sankar Nair.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Juergen Caro and Yanying Wei for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ma, C., Xu, C. et al. Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat Sustain (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing