Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Drivers of compliance monitoring in forest commons


Lasting community-based governance of common-pool resources depends on communities self-organizing to monitor compliance with rules. Monitoring serves an important function in community-based governance by establishing conditions for long-term cooperation, but the factors that foster its provision are poorly understood. We have analysed data from 177 forest user groups to assess the relative importance of 15 potential drivers of compliance monitoring, as well as the direction and form of their relationships. The results suggest that user groups are most likely to successfully self-organize to monitor compliance when rules are designed by local user groups (local rulemaking), and when those user groups are located close to or far from markets for forest products and have a larger number of members. Additionally, local leadership plays an important role in certain contexts, such as groups that are smaller in size and located near markets for forest products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of cases.
Fig. 2: Relative influence of variables.
Fig. 3: Partial dependence plots for the three most influential variables.
Fig. 4: Partial dependence plots for leadership interactions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available as a supplement to this paper and at

Code availability

The code that supports the findings of this study is available as a supplement to this paper and at


  1. Ostrom, E. Governing the Commons (Cambridge Univ. Press, 1990).

  2. Cox, M., Arnold, G. & Villamayor Tomas, S. A review of design principles for community-based natural resource management. Ecol. Soc. 15, 38 (2010).

    Article  Google Scholar 

  3. Coleman, E. A. Institutional factors affecting biophysical outcomes in forest management. J. Policy Anal. Manage. 28, 122–146 (2009).

    Article  Google Scholar 

  4. Chhatre, A. & Agrawal, A. Forest commons and local enforcement. Proc. Natl Acad. Sci. USA 105, 13286–13291 (2008).

    Article  CAS  Google Scholar 

  5. Baggio, J. et al. Explaining success and failure in the commons: the configural nature of Ostrom’s institutional design principles. Int. J. Commons 10, 417–439 (2016).

  6. Shinada, M. & Yamagishi, T. Punishing free riders: direct and indirect promotion of cooperation. Evol. Hum. Behav. 28, 330–339 (2007).

    Article  Google Scholar 

  7. Rustagi, D., Engel, S. & Kosfeld, M. Conditional cooperation and costly monitoring explain success in forest commons. Manage. Sci. 330, 961–965 (2010).

    CAS  Google Scholar 

  8. Epstein, G. Local rulemaking, enforcement and compliance in state-owned forest commons. Ecol. Econ. 131, 312–321 (2017).

    Article  Google Scholar 

  9. DeCaro, D. A., Janssen, M. A. & Lee, A. Synergistic effects of voting and enforcement on internalized motivation to cooperate in a resource dilemma. Judgm. Decis. Mak. 10, 511–537 (2015).

    Article  Google Scholar 

  10. Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).

    Article  CAS  Google Scholar 

  11. Agrawal, A. Sustainable governance of common-pool resources: context, methods, and politics. Annu. Rev. Anthropol. 32, 243–262 (2003).

    Article  Google Scholar 

  12. Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).

    Article  CAS  Google Scholar 

  13. Poteete, A. R. & Ostrom, E. Heterogeneity, group size and collective action: the role of institutions in forest management. Dev. Change 35, 435–461 (2004).

    Article  Google Scholar 

  14. Agrawal, A. & Goyal, S. Group size and collective action. Comp. Polit. Stud. 34, 63–93 (2001).

    Article  Google Scholar 

  15. Olson, M. The Logic of Collective Action: Public Goods and the Theory of Groups Vol. 124 (Harvard Univ. Press, 1965).

  16. Agrawal, A. & Ostrom, E. Collective action, property rights, and decentralization in resource use in India and Nepal. Polit. Soc. 29, 485–514 (2001).

    Article  Google Scholar 

  17. Ostrom, E. How types of goods and property rights jointly affect collective action. J. Theor. Polit. 15, 239–270 (2003).

    Article  Google Scholar 

  18. Barnett, A. et al. An iterative approach to case study analysis: insights from qualitative analysis of quantitative inconsistencies. Int. J. Commons 10, 467–494 (2016).

  19. Meinzen-Dick, R., Raju, K. V. & Gulati, A. What affects organization and collective action for managing resources? Evidence from canal irrigation systems in India. World Dev. 30, 649–666 (2002).

    Article  Google Scholar 

  20. Araral, E. Jr What explains collective action in the commons? Theory and evidence from the Philippines. World Dev. 37, 687–697 (2009).

    Article  Google Scholar 

  21. Basurto, X. & Ostrom, E. Beyond the tragedy of the commons. Econ. Fonti Energ. Ambiente 52, 35–60 (2009).

    Google Scholar 

  22. Agrawal, A. & Yadama, G. How do local institutions mediate market and population pressures on resources? Forest Panchayats in Kumaon, India. Dev. Change 28, 435–465 (1997).

    Article  Google Scholar 

  23. Andersson, K. & Agrawal, A. Inequalities, institutions, and forest commons. Glob. Environ. Change 21, 866–875 (2011).

    Article  Google Scholar 

  24. Schlager, E. & Ostrom, E. Property-rights regimes and natural resources: a conceptual analysis. Land Econ. 68, 249–262 (1992).

    Article  Google Scholar 

  25. Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).

    Article  CAS  Google Scholar 

  26. Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52, 143–150 (2002).

  27. Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).

    Article  CAS  Google Scholar 

  28. Agrawal, A. & Chhatre, A. Explaining success on the commons: community forest governance in the Indian Himalaya. World Dev. 34, 149–166 (2006).

    Article  Google Scholar 

  29. Wertime, M. et al. International Forestry Resources and Institutions (IFRI) Research Program: Field Manual Version 13 (Center for the Study of Institutions, Population and Environmental Change, Indiana Univ., 2007).

  30. Villamayor-Tomas, S. et al. Using case study data to understand SES interactions: a model-centered meta-analysis of SES framework applications. Curr. Opin. Environ. Sustain. 44, 48–57 (2020).

    Article  Google Scholar 

  31. Persha, L., Agrawal, A. & Chhatre, A. Social and ecological synergy: local rulemaking, forest livelihoods, and biodiversity conservation. Science 331, 1606–1608 (2011).

    Article  CAS  Google Scholar 

  32. Chhatre, A. & Agrawal, A. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons. Proc. Natl Acad. Sci. USA 106, 17667–17670 (2009).

    Article  CAS  Google Scholar 

  33. Alexander, S. M. et al. Participation in planning and social networks increase social monitoring in community-based conservation. Conserv. Lett. 11, e12562 (2018).

  34. Ostrom, E. in Games, Groups, and the Global Good (ed. Levin, S. A.) 207–228 (Springer, 2009).

  35. Frey, B. S. & Jegen, R. Motivation crowding rheory. J. Econ. Surv. 15, 589–611 (2001).

    Article  Google Scholar 

  36. Hanna, S. in Property Rights and the Environment: Social and Ecological Issues (eds Hanna, S. & Munasinghe, M.) 59–67 (Beijer International Institute of Ecological Economics and World Bank, 1995).

  37. Larson, A. M. & Springer, J. Recognition and Respect for Tenure Rights (International Union for Conservation of Nature and Natural Resources, 2016).

  38. Wright, G. D. et al. Decentralization can help reduce deforestation when user groups engage with local government. Proc. Natl Acad. Sci. USA 113, 14958–14963 (2016).

    Article  CAS  Google Scholar 

  39. Rudel, T. K. et al. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23, 1396–1405 (2009).

    Article  Google Scholar 

  40. Cinner, J. E. et al. Comanagement of coral reef social-ecological systems. Proc. Natl Acad. Sci. USA 109, 5219–5222 (2012).

    Article  CAS  Google Scholar 

  41. Kaganzi, E. et al. Sustaining linkages to high value markets through collective action in Uganda. Food Policy 34, 23–30 (2009).

    Article  Google Scholar 

  42. Henrich, J. & Gil-White, F. J. The evolution of prestige: freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. Evol. Hum. Behav. 22, 165–196 (2001).

    Article  CAS  Google Scholar 

  43. Von Rueden, C. in The Psychology of Social Status (eds Cheng, J. T. et al.) 179–200 (Springer, 2014).

  44. Glowacki, L. & von Rueden, C. Leadership solves collective action problems in small-scale societies. Philos. Trans. R. Soc. B 370, 20150010 (2015).

    Article  Google Scholar 

  45. Gutierrez, N. L., Hilborn, R. & Defeo, O. Leadership, social capital and incentives promote successful fisheries. Nature 470, 386–389 (2011).

    Article  CAS  Google Scholar 

  46. Tooby, J., Cosmides, L. & Price, M. E. Cognitive adaptations for n-person exchange: the evolutionary roots of organizational behavior. MDE Manage. Decis. Econ. 27, 103–129 (2006).

    Article  Google Scholar 

  47. Henrich, J., Chudek, M. & Boyd, R. The Big Man Mechanism: how prestige fosters cooperation and creates prosocial leaders. Philos. Trans. R. Soc. B 370, 20150013 (2015).

    Article  Google Scholar 

  48. Strobl, C., Hothorn, T. & Zeileis, A. Party on! A new, conditional variable importance measure for random forests available in the party package. R J. 1, 14–17 (2009).

  49. Epstein, G. et al. Institutional fit and the sustainability of social–ecological systems. Curr. Opin. Environ. Sustain. 14, 34–40 (2015).

    Article  Google Scholar 

  50. Acheson, J. Institutional failure in resource management. Annu. Rev. Anthropol. 35, 117–134 (2006).

    Article  Google Scholar 

  51. Hardin, R. Collective Action (The Johns Hopkins Univ. Press, 1982).

  52. Baland, J.-M. & Platteau, J.-P. The ambiguous impact of inequality on local resource management. World Dev. 27, 773–788 (1999).

    Article  Google Scholar 

  53. Adhikari, B. & Lovett, J. C. Transaction costs and community-based natural resource management in Nepal. J. Environ. Manage. 78, 5–15 (2006).

    Article  Google Scholar 

  54. Cardenas, J.-C. Real wealth and experimental cooperation: experiments in the field lab. J. Dev. Econ. 70, 263–289 (2003).

    Article  Google Scholar 

  55. Bardhan, P. & Dayton-Johnson, J. in The Drama of the Commons (eds Ostrom, E. et al.) 87–112 (National Academies Press, 2002).

  56. Varughese, G. & Ostrom, E. The contested role of heterogeneity in collective action: some evidence from community forestry in Nepal. World Dev. 29, 747–765 (2001).

    Article  Google Scholar 

  57. Henrich, J. et al. In search of homo economicus: behavioral experiments in 15 small-scale societies. Am. Econ. Rev. 91, 73–78 (2001).

    Article  Google Scholar 

  58. Gibson, C. C., Williams, J. T. & Ostrom, E. Local enforcement and better forests. World Dev. 33, 273–284 (2005).

    Article  Google Scholar 

  59. Maskey, V., Gebremedhin, T. G. & Dalton, T. J. Social and cultural determinants of collective management of community forest in Nepal. J. For. Econ. 11, 261–274 (2006).

    Google Scholar 

  60. Doss, C. R. & Meinzen-Dick, R. Collective action within the household: insights from natural resource management. World Dev. 74, 171–183 (2015).

    Article  Google Scholar 

  61. Cardenas, J. C., Stranlund, J. & Willis, C. Local environmental control and institutional crowding-out. World Dev. 28, 1719–1733 (2000).

    Article  Google Scholar 

  62. Fearon, J. D. & Laitin, D. D. Explaining interethnic cooperation. Am. Polit. Sci. Rev. 90, 715–735 (1996).

    Article  Google Scholar 

  63. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article  CAS  Google Scholar 

  64. R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019).

  65. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26. (2008).

    Article  Google Scholar 

  66. Greenwell, B. et al. gbm: Generalized Boosted Regression Models R package version 2.1.5 (2019).

  67. Friedman, J. H. & Meulman, J. J. Multiple additive regression trees with application in epidemiology. Stat. Med. 22, 1365–1381 (2003).

    Article  Google Scholar 

  68. Greenwell, B. pdp: an R package for constructing partial dependence plots. R J. 9, 421–436 (2017).

    Article  Google Scholar 

  69. Molnar, C., Bischl, B. & Casalicchio, G. iml: an R package for interpretable machine learning. J. Open Source Softw. 3, 786 (2018).

    Article  Google Scholar 

  70. Friedman, J. H. & Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954 (2008).

    Article  Google Scholar 

  71. Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).

  72. Rana, P. & Miller, D. C. Machine learning to analyze the social-ecological impacts of natural resource policy: insights from community forest management in the Indian Himalaya. Environ. Res. Lett. 14, 024008 (2018).

  73. Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

  74. Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B 370, 20130268 (2015).

    Article  Google Scholar 

  75. Athey, S. Machine learning and causal inference for policy evaluation. In Proc. 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 5–6 (Association for Computing Machinery, 2015).

  76. Kreif, N. & DiazOrdaz, K. Machine learning in policy evaluation: new tools for causal inference. Oxf. Res. Encyclop. Econ. Finance (2019).

  77. Banana, A. Y. & Gombe-Ssekbajjwe, W. in People and Forests: Communities, Institutions and Governance (eds Gibson, C. C. et al.) 87–98 (MIT Press, 2000).

  78. GADM Database of Global Administrative Areas Version 3.6 (Global Administrative Areas, accessed 5 December 2019).

Download references


This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) through funding received from the National Science Foundation (DBI-1639145).

Author information

Authors and Affiliations



All authors contributed equally to research design and the writing of this manuscript. G.E. performed the analysis.

Corresponding author

Correspondence to Graham Epstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Krister Andersson, Ashwini Chhatre and Pushpendra Rana for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1–5.

Reporting Summary

Supplementary Data 1

Compliance monitoring data.

Supplementary Data 2

Compliance monitoring code in R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein, G., Gurney, G., Chawla, S. et al. Drivers of compliance monitoring in forest commons. Nat Sustain 4, 450–456 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing