Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain mechanisms underlying prospective thinking of sustainable behaviours

Abstract

The preservation of our environment requires sustainable ways of thinking and living. Here, we aimed to explore the core network of brain regions involved in the prospective thinking about (un)sustainable behaviours. Using a neuroimaging cue-exposure paradigm, we requested participants (n = 86) to report behaviours that were the most feasible for them to implement (sustainable behaviour) or diminish (unsustainable behaviour) in the future. We find that increasing sustainable behaviours was perceived to be more feasible than reducing unsustainable ones. Consistent with the role of the ventromedial prefrontal cortex and hippocampus in providing access to new representations of past behaviours, we observed stronger activation of these regions when picturing an increase in sustainable behaviours. Critically, simulating the reduction of unsustainable behaviours triggered activation within the right dorsolateral prefrontal cortex (a key region for inhibitory-control processes), which was negatively associated with hippocampal activation (a key region for memory). These findings suggest that the dorsolateral prefrontal cortex downregulates brain regions that support memory retrieval of unsustainable behaviours. This mechanism could inhibit the access to episodic details associated with unsustainable behaviours and in turn allow for prospective thinking of sustainable behaviours. These findings provide an initial step towards a better understanding of the brain networks that are involved in the adoption of sustainable habits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Examples of ‘do more’ and ‘do less’ cues used during the cue-exposure task.
Fig. 2: Feasibility ratings across the ‘do less’ and ‘do more’ cues.
Fig. 3: Brain imaging results for ‘do less’ trials.
Fig. 4: Brain imaging results for ‘do more’ trials.
Fig. 5: Significant PPI with the rdlPFC seed for the parametric contrast for feasibility ratings linked to ‘do less’ trials.

Data availability

The raw data are available at OpenNeuro (https://openneuro.org/datasets/ds002770). The unthresholded statistical maps are available at Neurovault (https://neurovault.org/collections/7266/).

Code availability

The experimental task code and stimuli are available at GitHub (https://github.com/dbrevers/sustainable_task).

References

  1. 1.

    Lange, F. & Dewitte, S. Measuring pro-environmental behavior: review and recommendations. J. Environ. Psychol. 63, 92–100 (2019).

    Google Scholar 

  2. 2.

    White, K., Habib, R. & Hardisty, D. J. How to SHIFT consumer behaviors to be more sustainable: a literature review and guiding framework. J. Mark. 83, 22–49 (2019).

    Google Scholar 

  3. 3.

    Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron 76, 677–694 (2012).

    CAS  Google Scholar 

  4. 4.

    D’Argembeau, A., Renaud, O. & Van der Linden, M. Frequency, characteristics and functions of future-oriented thoughts in daily life. Appl. Cogn. Psychol. 25, 96–103 (2011).

    Google Scholar 

  5. 5.

    D’Argembeau, A. & Demblon, J. On the representational systems underlying prospection: evidence from the event-cueing paradigm. Cognition 125, 160–167 (2012).

    Google Scholar 

  6. 6.

    Szpunar, K. K. Episodic future thought: an emerging concept. Perspect. Psychol. Sci. 5, 142–162 (2010).

    Google Scholar 

  7. 7.

    Schacter, D. L., Benoit, R. G. & Szpunar, K. K. Episodic future thinking: mechanisms and functions. Curr. Opin. Behav. Sci. 17, 41–50 (2017).

    Google Scholar 

  8. 8.

    Schacter, D. L., Benoit, R. G., De Brigard, F. & Szpunar, K. K. Episodic future thinking and episodic counterfactual thinking: intersections between memory and decisions. Neurobiol. Learn. Mem. 117, 14–21 (2015).

    Google Scholar 

  9. 9.

    Benoit, R. G., Davies, D. J. & Anderson, M. C. Reducing future fears by suppressing the brain mechanisms underlying episodic simulation. Proc. Natl Acad. Sci. USA 113, E8492–E8501 (2016).

    CAS  Google Scholar 

  10. 10.

    Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Google Scholar 

  11. 11.

    Wu, J. Q., Szpunar, K. K., Godovich, S. A., Schacter, D. L. & Hofmann, S. G. Episodic future thinking in generalized anxiety disorder. J. Anxiety Disord. 36, 1–8 (2015).

    Google Scholar 

  12. 12.

    Barron, H. C., Dolan, R. J. & Behrens, T. E. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16, 1492–1498 (2013).

    CAS  Google Scholar 

  13. 13.

    Benoit, R. G., Szpunar, K. K. & Schacter, D. L. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge. Proc. Natl Acad. Sci. USA 111, 16550–16555 (2014).

    CAS  Google Scholar 

  14. 14.

    Benoit, R. G. & Anderson, M. C. Opposing mechanisms support the voluntary for getting of unwanted memories. Neuron 76, 450–460 (2012).

    CAS  Google Scholar 

  15. 15.

    Gagnepain, P., Henson, R. N. & Anderson, M. C. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition. Proc. Natl Acad. Sci. USA 111, E1310–E1319 (2014).

    CAS  Google Scholar 

  16. 16.

    Anderson, M. C. et al. Neural systems underlying the suppression of unwanted memories. Science 303, 232–235 (2004).

    CAS  Google Scholar 

  17. 17.

    Depue, B. E., Curran, T. & Banich, M. T. Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science 317, 215–219 (2007).

    CAS  Google Scholar 

  18. 18.

    Paz-Alonso, P. M., Bunge, S. A., Anderson, M. C. & Ghetti, S. Strength of coupling within a mnemonic control network differentiates those who can and cannot suppress memory retrieval. J. Neurosci. 33, 5017–5026 (2013).

    CAS  Google Scholar 

  19. 19.

    Benoit, R. G., Hulbert, J. C., Huddleston, E. & Anderson, M. C. Adaptive top-down suppression of hippocampal activity and the purging of intrusive memories from consciousness. J. Cogn. Neurosci. 27, 96–111 (2015).

    Google Scholar 

  20. 20.

    Depue, B. E., Orr, J. M., Smolker, H. R., Naaz, F. & Banich, M. T. The organization of right prefrontal networks reveals common mechanisms of inhibitory regulation across cognitive, emotional, and motor processes. Cereb. Cortex 26, 1634–1646 (2016).

    CAS  Google Scholar 

  21. 21.

    Anderson, M. C., Bunce, J. G. & Barbas, H. Prefrontal–hippocampal pathways underlying inhibitory control over memory. Neurobiol. Learn. Mem. https://doi.org/10.1016/j.nlm.2015.11.008 (2015).

  22. 22.

    Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013).

    Google Scholar 

  23. 23.

    Hung, Y., Gaillard, S. L., Yarmak, P. & Arsalidou, M. Dissociations of cognitive inhibition, response inhibition, and emotional interference: voxelwise ALE meta-analyses of fMRI studies. Hum. Brain Mapp. 39, 4065–4082 (2018).

    Google Scholar 

  24. 24.

    Benoit, R. G. & Schacter, D. L. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychol 75, 450–457 (2015).

    Google Scholar 

  25. 25.

    Friston, K. J. et al. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 218–229 (1997).

    CAS  Google Scholar 

  26. 26.

    Demblon, J. & D’Argembeau, A. The organization of prospective thinking: evidence of event clusters in freely generated future thoughts. Conscious Cogn. 24, 75–83 (2014).

    Google Scholar 

  27. 27.

    Stawarczyk, D. & D’Argembeau, A. Neural correlates of personal goal processing during episodic future thinking and mind-wandering: an ALE meta-analysis. Hum. Brain Mapp. 36, 2928–2947 (2015).

    Google Scholar 

  28. 28.

    Lee, P.-S., Sung, Y.-H., Wu, C.-C., Ho, L.-C. & Chiou, W.-B. Using episodic future thinking to pre-experience climate change increases pro-environmental behavior. Environ. Behav. 52, 60–81 (2020).

    Google Scholar 

  29. 29.

    Bø, S. & Wolff, K. I can see clearly now: episodic future thinking and imaginability in perceptions of climate-related risk events. Front. Psychol. 11, 218 (2020).

    Google Scholar 

  30. 30.

    Attari, S. Z., DeKay, M. L., Davidson, C. I. & Bruine de Bruin, W. Public perceptions of energy consumption and savings. Proc. Natl Acad. Sci. USA 107, 16054–16059 (2010).

    CAS  Google Scholar 

  31. 31.

    Galla, B. M. & Duckworth, A. L. More than resisting temptation: beneficial habits mediate the relationship between self-control and positive life outcomes. J. Pers. Soc. Psychol. 109, 508–525 (2015).

    Google Scholar 

  32. 32.

    Wood, W. Good Habits, Bad Habits (Macmillan, 2019).

  33. 33.

    Inzlicht, M. & Schmeichel, B. J. What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspect. Psychol. Sci. 7, 450–463 (2012).

    Google Scholar 

  34. 34.

    Inzlicht, M., Schmeichel, B. J. & Macrae, C. N. Why self-control seems (but may not be) limited. Trends Cogn. Sci. 18, 127–133 (2014).

    Google Scholar 

  35. 35.

    Berry, M. S., Nickerson, N. P. & Odum, A. L. Delay discounting as an index of sustainable behavior: devaluation of future air quality and implications for public health. Int. J. Environ. Res. Publ. Health 14, 997 (2017).

    Google Scholar 

  36. 36.

    Wilson, C. & Dowlatabadi, H. Models of decision making and residential energy use. Annu. Rev. Environ. Resour. 32, 169–203 (2007).

    Google Scholar 

  37. 37.

    Hershfield, H. E., Bang, H. M. & Weber, E. U. National differences in environmental concern and performance are predicted by country age. Psychol. Sci. 25, 152–160 (2014).

    Google Scholar 

  38. 38.

    Sawe, N. & Knutson, B. Neural valuation of environmental resources. NeuroImage 122, 87–95 (2015).

    Google Scholar 

  39. 39.

    Demblon, J. & D’Argembeau, A. Contribution of past and future self-defining event networks to personal identity. Memory 25, 656–665 (2017).

    Google Scholar 

  40. 40.

    D’Argembeau, A. & Mathy, A. Tracking the construction of episodic future thoughts. J. Exp. Psychol. Gen. 140, 258–271 (2011).

    Google Scholar 

  41. 41.

    Christian, B. M., Miles, L. K., Fung, F. H., Best, S. & Macrae, C. N. The shape of things to come: exploring goal-directed prospection. Conscious Cogn. 22, 471–478 (2013).

    Google Scholar 

  42. 42.

    Nielsen, K. S. et al. How psychology can help limit climate change. Am. Psychol. https://doi.org/10.1037/amp0000624 (2020).

  43. 43.

    Sawe, N. Using neuroeconomics to understand environmental valuation. Ecol. Econ. 135, 1–9 (2017).

    Google Scholar 

  44. 44.

    Sawe, N. Adapting neuroeconomics for environmental and energy policy. Behav. Pub. Pol. 3, 17–36 (2019).

    Google Scholar 

  45. 45.

    Kollmuss, A. & Agyeman, J. Mind the Gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).

    Google Scholar 

  46. 46.

    Nielsen, K. S., van der Linden, S. & Stern, P. C. How behavioral interventions can reduce the climate impact of energy use. Joule https://doi.org/10.1016/j.joule.2020.07.008 (2020).

  47. 47.

    Vandenbergh, M. P. & Nielsen, K. S. From myths to action. Nat. Clim. Change 9, 8–9 (2019).

    Google Scholar 

  48. 48.

    Gibson, J. J. The Ecological Approach to Visual Perception (Houghton Mifflin, 1979).

  49. 49.

    Pezzulo, G. & Cisek, P. Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends Cogn. Sci. 20, 414–424 (2016).

    Google Scholar 

  50. 50.

    Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    Google Scholar 

  51. 51.

    Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    CAS  Google Scholar 

  52. 52.

    Andersson, J. L. R., Jenkinson, M. & Smith, S. Non-linear Optimisation FMRIB Technical Report TR07JA1 (FMRIB Analysis Group, 2007).

  53. 53.

    Andersson, J. L. R., Jenkinson, M. & Smith, S. Non-Linear Registration, aka Spatial Normalisation FMRIB Technical Report TR07JA2 (FMRIB Analysis Group, 2007).

Download references

Acknowledgements

D.B. is supported by the Luxembourg National Research Fund (FNR); CORE—Junior Track (BETHAB). P.M. (Senior Research Associate) is funded by the Belgian Fund for Scientific Research (F.R.S., FNRS, Brussels, Belgium). C.B. was supported by the ‘Bijzonder Onderzoeksfonds’ (no. BOF 16/GOA/017), and the ‘Rode Neuzen’ funding for scientific research (no. G0F4617N).

Author information

Affiliations

Authors

Contributions

D.B., C.B., C.V. and J.B. designed the study and wrote the protocol. D.B. recruited the participants, collected the data and conducted the statistical analysis. C.B., P.M., G.S., C.V. and J.B. provided experimental support and revision suggestions. D.B. wrote the original draft of the manuscript. All of the authors made a substantial contribution to and approved the final manuscript.

Corresponding author

Correspondence to Damien Brevers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1: descriptive statistics on post-ratings. Supplementary Table 2: significant brain activation on the cue exposure task.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brevers, D., Baeken, C., Maurage, P. et al. Brain mechanisms underlying prospective thinking of sustainable behaviours. Nat Sustain (2021). https://doi.org/10.1038/s41893-020-00658-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing