Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solar-driven reforming of solid waste for a sustainable future

Abstract

Approximately 70% of global municipal solid waste is lost to landfills or the environment each year, an emblem of our increasingly unsustainable economic system in which materials and energy are produced, used and promptly discarded. Photoreforming is a sunlight-driven technology that can help disrupt this linear model by simultaneously reclaiming the value in waste and contributing to renewable hydrogen production. This Review examines the advantages and challenges of photoreforming of real waste streams. By reviewing literature on photoreforming and conducting basic techno-economic and life cycle assessments, we identify key pathways for enhancing the impact of photoreforming for a carbon-neutral future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram of the waste photoreforming process.
Fig. 2: Analysis of global waste streams and their applicability to photoreforming.
Fig. 3: Feasibility of pilot-scale photoreforming.
Fig. 4: Recommended future research areas for waste photoreforming.

Similar content being viewed by others

References

  1. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition (Ellen MacArthur Foundation, 2013).

  2. Completing the Picture: How the Circular Economy Tackles Climate Change (Ellen MacArthur Foundation, 2019).

  3. World Energy Outlook 2018 (International Energy Agency, 2018).

  4. The Future of Hydrogen: Seizing Today’s Opportunities (International Energy Agency, 2019).

  5. Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0 - A Global Snapshot of Solid Waste Management to 2050 (World Bank Group, 2018).

  6. Kawai, T. & Sakata, T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286, 474–476 (1980).

    CAS  Google Scholar 

  7. Kawai, T. & Sakata, T. Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement. Chem. Lett. 10, 81–84 (1981).

    Google Scholar 

  8. Sakata, T. & Kawai, T. Photodecomposition of water by using organic compounds. Hydrogen evolution by powdered semiconductor photocatalysts. J. Syn. Org. Chem. Jpn 39, 589–602 (1981).

    CAS  Google Scholar 

  9. Puga, A. V. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord. Chem. Rev. 315, 1–66 (2016).

    CAS  Google Scholar 

  10. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    CAS  Google Scholar 

  11. Kuehnel, M. F. & Reisner, E. Solar hydrogen generation from lignocellulose. Angew. Chem. Int. Ed. 57, 3290–3296 (2018).

    CAS  Google Scholar 

  12. Christoforidis, K. C. & Fornasiero, P. Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem 9, 1523–1544 (2017).

    CAS  Google Scholar 

  13. Huang, C. W., Nguyen, B. S., Wu, J. C. S. & Nguyen, V. H. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. Int. J. Hydrog. Energy 45, 18144–18159 (2020).

    CAS  Google Scholar 

  14. Uekert, T., Kasap, H. & Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141, 15201–15210 (2019).

    CAS  Google Scholar 

  15. Yang, Y. Z., Chang, C. H. & Idriss, H. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh). Appl. Catal. B Environ. 67, 217–222 (2006).

    CAS  Google Scholar 

  16. Al-Azri, Z. H. N. et al. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. J. Catal. 329, 355–367 (2015).

    CAS  Google Scholar 

  17. Bowker, M., Davies, P. R. & Al-Mazroai, L. S. Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal. Lett. 128, 253–255 (2009).

    CAS  Google Scholar 

  18. Global Waste Management Outlook (United Nations Environment Programme, 2015).

  19. Tripathi, N., Hills, C. D., Singh, R. S. & Atkinson, C. J. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim. Atmos. Sci. 2, 35 (2019).

    Google Scholar 

  20. Kadam, S. R. et al. A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv. 4, 60626–60635 (2014).

    CAS  Google Scholar 

  21. Wakerley, D. W. et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy 2, 17021 (2017).

    CAS  Google Scholar 

  22. Kasap, H., Achilleos, D. S., Huang, A. & Reisner, E. Photoreforming of lignocellulose into H2 using nanoengineered carbon nitride under benign conditions. J. Am. Chem. Soc. 140, 11604–11607 (2018).

    CAS  Google Scholar 

  23. Zhou, W. et al. Feasibility of lipid production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources 12, 5249–5263 (2017).

    CAS  Google Scholar 

  24. Fruit and Vegetable Processing Chapter 2 - General Properties of Fruit and Vegetables; Chemical Composition and Nutritional Aspects; Structural Features (Food and Agriculture Organization of the United Nations, accessed 30 April 2020); http://www.fao.org/3/V5030E/V5030E05.htm

  25. FAO’s Animal Production and Health Division: Meat & Meat Products (Food and Agriculture Organization of the United Nations, accessed 30 April 2020); https://go.nature.com/365NGWT

  26. Uekert, T., Dorchies, F., Pichler, C. M. & Reisner, E. Photoreforming of food waste into value-added products over visible-light-absorbing catalysts. Green Chem. 22, 3262–3271 (2020).

    CAS  Google Scholar 

  27. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Google Scholar 

  28. Albertsson, A. C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    CAS  Google Scholar 

  29. Uekert, T., Kuehnel, M. F., Wakerley, D. W. & Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 11, 2853–2857 (2018).

    CAS  Google Scholar 

  30. Bauer, M. et al. Sink–float density separation of post-consumer plastics for feedstock recycling. J. Mater. Cycles Waste Manag. 20, 1781–1791 (2018).

    Google Scholar 

  31. Ramos, A., Monteiro, E., Silva, V. & Rouboa, A. Co-gasification and recent developments on waste-to-energy conversion: a review. Renew. Sustain. Energy Rev. 81, 380–398 (2018).

    CAS  Google Scholar 

  32. Zou, J., Zhang, G. & Xu, X. One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Appl. Catal. A Gen. 563, 73–79 (2018).

    CAS  Google Scholar 

  33. Jaswal, R., Shende, R., Nan, W. & Shende, A. Photocatalytic reforming of pinewood (Pinus ponderosa) acid hydrolysate for hydrogen generation. Int. J. Hydrog. Energy 42, 2839–2848 (2017).

    CAS  Google Scholar 

  34. Kida, T. et al. Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. Int. J. Hydrog. Energy 29, 269–274 (2004).

    CAS  Google Scholar 

  35. Pichler, C. M., Uekert, T. & Reisner, E. Photoreforming of biomass in metal salt hydrate solutions. Chem. Commun. 56, 5743–5746 (2020).

    CAS  Google Scholar 

  36. Shiragami, T., Tomo, T., Tsumagari, H., Ishii, Y. & Yasuda, M. Hydrogen evolution from napiergrass by the combination of biological treatment and a Pt-loaded TiO2-photocatalytic reaction. Catalysts 2, 56–67 (2012).

    CAS  Google Scholar 

  37. Yasuda, M., Kurogi, R., Tsumagari, H., Shiragami, T. & Matsumoto, T. New approach to fuelization of herbaceous lignocelluloses through simultaneous saccharification and fermentation followed by photocatalytic reforming. Energies 7, 4087–4097 (2014).

    Google Scholar 

  38. Melchionna, M. & Fornasiero, P. Updates on the roadmap for photocatalysis. ACS Catal. 10, 5493–5501 (2020).

    CAS  Google Scholar 

  39. Speltini, A. et al. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study. Photochem. Photobiol. Sci. 13, 1410–1419 (2014).

    CAS  Google Scholar 

  40. Zhou, Y., Ye, X. & Lin, D. Enhance photocatalytic hydrogen evolution by using alkaline pretreated corn stover as a sacrificial agent. Int. J. Energy Res. 44, 4616–4628 (2020).

    CAS  Google Scholar 

  41. Caravaca, A., Jones, W., Hardacre, C. & Bowker, M. H2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proc. R. Soc. A Math. Phys. Eng. Sci. 472, 20160054 (2016).

    CAS  Google Scholar 

  42. Speltini, A. et al. Swine sewage as sacrificial biomass for photocatalytic hydrogen gas production: explorative study. Int. J. Hydrog. Energy 39, 11433–11440 (2014).

    CAS  Google Scholar 

  43. Speltini, A. et al. Evaluation of UV-A and solar light photocatalytic hydrogen gas evolution from olive mill wastewater. Int. J. Hydrog. Energy 40, 4303–4310 (2015).

    CAS  Google Scholar 

  44. Speltini, A. et al. Photocatalytic hydrogen evolution assisted by aqueous (waste)biomass under simulated solar light: oxidized g-C3N4 vs. P25 titanium dioxide. Int. J. Hydrog. Energy 44, 4072–4078 (2019).

    CAS  Google Scholar 

  45. Sanwald, K. E. et al. Overcoming the rate-limiting reaction during photoreforming of sugar aldoses for H2-generation. ACS Catal. 7, 3236–3244 (2017).

    CAS  Google Scholar 

  46. Tapia-Venegas, E. et al. Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev. Environ. Sci. 14, 761–785 (2015).

    CAS  Google Scholar 

  47. Li, D., Yu, J. C. C., Nguyen, V. H., Wu, J. C. S. & Wang, X. A dual-function photocatalytic system for simultaneous separating hydrogen from water splitting and photocatalytic degradation of phenol in a twin-reactor. Appl. Catal. B Environ. 239, 268–279 (2018).

    CAS  Google Scholar 

  48. Wang, Y. et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 11, 3043 (2020).

    CAS  Google Scholar 

  49. Greenblatt, J. B., Miller, D. J., Ager, J. W., Houle, F. A. & Sharp, I. D. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2, 381–420 (2018).

    CAS  Google Scholar 

  50. Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264–3278 (2014).

    CAS  Google Scholar 

  51. Braham, R. J. & Harris, A. T. Review of major design and scale-up considerations for solar photocatalytic reactors. Ind. Eng. Chem. Res. 48, 8890–8905 (2009).

    CAS  Google Scholar 

  52. Path to Hydrogen Competitiveness: A Cost Perspective (Hydrogen Council, 2020).

  53. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    CAS  Google Scholar 

  54. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    CAS  Google Scholar 

  55. Tribe, M. A. & Alpine, R. L. W. Scale economies and the ‘0.6 Rule’. Eng. Costs Prod. Econ. 10, 271–278 (1986).

    Google Scholar 

  56. Spath, P. L. & Mann, M. K. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming (National Renewable Energy Laboratory, 2001).

  57. Measuring Scope 3 Carbon Emissions-Water and Waste (ARUP and De Montfort Univ., 2012).

  58. Van Zalk, J. & Behrens, P. The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy 123, 83–91 (2018).

    Google Scholar 

  59. Okolie, J. A., Nanda, S., Dalai, A. K., Berruti, F. & Kozinski, J. A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sust. Energ. Rev. 119, 109546 (2020).

    CAS  Google Scholar 

  60. Sharifzadeh, M. et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog. Energy Combust. Sci. 71, 1–80 (2019).

    Google Scholar 

  61. Yun, Y. M. et al. Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour. Technol. 248, 79–87 (2018).

    CAS  Google Scholar 

  62. Hayes, D. J., Fitzpatrick, S., Hayes, M. H. B. & Ross, J. R. H. in Biorefineries-Industrial Processes and Products (eds Kamm, B. et al.) 139–164 (Wiley-VCH Verlag GmbH, 2008).

  63. Jansen, M. L. A. & van Gulik, W. M. Towards large scale fermentative production of succinic acid. Curr. Opin. Biotech. 30, 190–197 (2014).

    CAS  Google Scholar 

  64. Takanabe, K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 7, 8006–8022 (2017).

    CAS  Google Scholar 

  65. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    CAS  Google Scholar 

  66. Schröder, M. et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3, 1014–1017 (2015).

    Google Scholar 

  67. Wei, Q. et al. Direct solar photocatalytic hydrogen generation with CPC photoreactors: system development. Sol. Energy 153, 215–223 (2017).

    CAS  Google Scholar 

  68. Isikgor, F. H. & Remzi Becer, C. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem 6, 4497–4559 (2015).

    CAS  Google Scholar 

  69. Wu, X. et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 1, 772–780 (2018).

    CAS  Google Scholar 

  70. Huang, Z. et al. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nat. Catal. 3, 170–178 (2020).

    CAS  Google Scholar 

  71. Lopez, G. et al. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 82, 576–596 (2018).

    CAS  Google Scholar 

  72. Molino, A., Larocca, V., Chianese, S. & Musmarra, D. Biofuels production by biomass gasification: a review. Energies 11, 811 (2018).

    Google Scholar 

  73. Lombardi, L., Carnevale, E. & Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 37, 26–44 (2015).

    Google Scholar 

  74. Binder, M., Kraussler, M., Kuba, M. & Luisser, M. Hydrogen from Biomass Gasification (IEA Bioenergy, 2018).

  75. Couto, N., Silva, V., Monteiro, E. & Rouboa, A. Exergy analysis of Portuguese municipal solid waste treatment via steam gasification. Energy Convers. Manag. 134, 235–246 (2017).

    CAS  Google Scholar 

  76. Wulf, C. & Kaltschmitt, M. Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour. Technol. 150, 466–475 (2013).

    CAS  Google Scholar 

  77. Moreno, J. & Dufour, J. Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int. J. Hydrog. Energy 38, 7616–7622 (2013).

    CAS  Google Scholar 

  78. Khoo, H. H. LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resour. Conserv. Recycl. 145, 67–77 (2019).

    Google Scholar 

  79. Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J. & Olazar, M. Syngas from steam gasification of polyethylene in a conical spouted bed reactor. Fuel 109, 461–469 (2013).

    CAS  Google Scholar 

  80. Shahabuddin, M., Krishna, B. B., Bhaskar, T. & Perkins, G. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: summary of recent techno-economic analyses. Bioresour. Technol. 299, 122557 (2020).

    CAS  Google Scholar 

  81. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sust. Energ. Rev. 73, 346–368 (2017).

    CAS  Google Scholar 

  82. Guedes, R. E., Luna, A. S. & Torres, A. R. Operating parameters for bio-oil production in biomass pyrolysis: a review. J. Anal. Appl. Pyrol. 129, 134–149 (2018).

    CAS  Google Scholar 

  83. Qureshi, K. M., Kay Lup, A. N., Khan, S., Abnisa, F. & Wan Daud, W. M. A. A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. J. Anal. Appl. Pyrol. 131, 52–75 (2018).

    CAS  Google Scholar 

  84. Benavides, P. T., Sun, P., Han, J., Dunn, J. B. & Wang, M. Life-cycle analysis of fuels from post-use non-recycled plastics. Fuel 203, 11–22 (2017).

    CAS  Google Scholar 

  85. Fivga, A. & Dimitriou, I. Pyrolysis of plastic waste for production of heavy fuel substitute: a techno-economic assessment. Energy 149, 865–874 (2018).

    CAS  Google Scholar 

  86. Rogers, J. G. & Brammer, J. G. Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenerg. 36, 208–217 (2012).

    CAS  Google Scholar 

  87. Brigagão, G. V., de Queiroz Fernandes Araújo, O., de Medeiros, J. L., Mikulcic, H. & Duic, N. A techno-economic analysis of thermochemical pathways for corncob-to-energy: fast pyrolysis to bio-oil, gasification to methanol and combustion to electricity. Fuel Process. Technol. 193, 102–113 (2019).

    Google Scholar 

  88. Qureshi, M. S. et al. Pyrolysis of plastic waste: opportunities and challenges. J. Anal. Appl. Pyrol. 148, 104804 (2020).

    Google Scholar 

  89. Tian, H. et al. Organic waste to biohydrogen: a critical review from technological development and environmental impact analysis perspective. Appl. Energy 256, 113961 (2019).

    CAS  Google Scholar 

  90. Jarunglumlert, T., Prommuak, C., Putmai, N. & Pavasant, P. Scaling-up bio-hydrogen production from food waste: feasibilities and challenges. Int. J. Hydrog. Energy 43, 634–648 (2018).

    CAS  Google Scholar 

  91. Djomo, S. N. & Blumberga, D. Comparative life cycle assessment of three biohydrogen pathways. Bioresour. Technol. 102, 2684–2694 (2011).

    CAS  Google Scholar 

  92. Manish, S. & Banerjee, R. Comparison of biohydrogen production processes. Int. J. Hydrog. Energy 33, 279–286 (2008).

    CAS  Google Scholar 

  93. Ljunggren, M., Wallberg, O. & Zacchi, G. Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresour. Technol. 102, 9524–9531 (2011).

    CAS  Google Scholar 

  94. Han, W., Fang, J., Liu, Z. & Tang, J. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour. Technol. 202, 107–112 (2016).

    CAS  Google Scholar 

  95. Cho, E. J., Trinh, L. T. P., Song, Y., Lee, Y. G. & Bae, H. J. Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 298, 122386 (2020).

    CAS  Google Scholar 

  96. Zhang, A. Y. Z. et al. Valorisation of bakery waste for succinic acid production. Green Chem. 15, 690–695 (2013).

    CAS  Google Scholar 

  97. Hermann, B. G. & Patel, M. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology: a techno-economic analysis. Appl. Biochem. Biotechnol. 136, 361–388 (2007).

    CAS  Google Scholar 

  98. Morales, M. et al. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environ. Sci. 9, 2794–2805 (2016).

    CAS  Google Scholar 

  99. Food Wastage Footprint and Climate Change (Food and Agriculture Organization of the United Nations, 2015).

  100. Van Ewijk, S., Stegemann, J. A. & Ekins, P. Global life cycle paper flows, recycling metrics, and material efficiency. J. Ind. Ecol. 22, 686–693 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Cambridge Creative Circular Plastics Centre (CirPlas, EP/S025308/1), EPSRC (NanoDTC, EP/L015978/1 and EP/S022953), the Austrian Science Fund (Schrödinger Scholarship J-4381), the Erasmus Programme by the European Commission, and the OMV Group. We thank Q. Wang, T. Li and i-Teams (A. Sneyd, A. Weatherup, B. Gutstein, C. Holloway, D. Elio D’Orazio, D. Caddick, E. Soto-Ruiz, J. Teo, J. Carey, J. Qiu, L. Allen, M. Santihayu Sukma, M. Priest, S. Admad, T. Najmatul Huq and Z. Hao) for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.U. and E.R. designed the review, T.U. and T.S. performed the feasibility analysis, C.M.P. prepared the alternative technologies tables and discussion and T.U. developed all other figures and tables. All authors contributed to the writing of the manuscript and approved the final version.

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

A patent application on photoreforming with carbonaceous photocatalysts has been filed by Cambridge Enterprise (WO 2019/229255) and lists E.R. as an inventor. The other authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Feng Wang, Jeffrey Chi-Sheng Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1–14, Methods, Discussion and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uekert, T., Pichler, C.M., Schubert, T. et al. Solar-driven reforming of solid waste for a sustainable future. Nat Sustain 4, 383–391 (2021). https://doi.org/10.1038/s41893-020-00650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00650-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene