Abstract
Halide perovskites are poised as a game-changing semiconductor system with diverse applications in optoelectronics. Industrial entities aim to commercialize perovskite technologies because of high performance but also because this type of semiconductor can be processed from solution, a feature enabling low cost and fast production. Here, we analyse the health and environmental impacts of eight solvents commonly used in perovskite processing. We consider first- and higher-order ramifications of each solvent on an industrial scale such as solvent production, use/removal, emissions and potential end-of-life treatments. Further, we consider the energy of evaporation for each solvent, air emission, condensation and subsequent incineration, reuse or distillation for solvent recycling, and apply a full end-of-life analysis. For human health impact, we use the ‘USEtox’ method but also consider toxicity data beyond carcinogenic classifications. We find that dimethyl sulfoxide has the lowest total impact, by being the most environmentally friendly and least deleterious to human health of the solvents considered. The analysis of the effects of these solvents on human health and the environment provides guidance for sustainable development of this new technology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Recent progress of eco-friendly manufacturing process of efficient perovskite solar cells
Nano Convergence Open Access 12 June 2023
-
Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
Nature Communications Open Access 11 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The datasets generated during and/or analysed during the current study are available from the first author on reasonable request.
References
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
Kim, H.-S. et al. Lead iodide perovskite sensitized all-slid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
Best Research-Cell Efficiency Chart (NREL, accessed 15 March 2020); https://www.nrel.gov/pv/cell-efficiency.html
Berry, J. J. et al. Perovskite photovoltaics: the path to a printable terawatt-scale technology. ACS Energy Lett. 2, 2540–2544 (2017).
Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).
Jean, J., Woodhouse, M. & Bulović, V. Accelerating photovoltaic market entry with module replacement. Joule 3, 2824–2841 (2019).
Ono, L. K., Park, N.-G., Zhu, K., Huang, W. & Qi, Y. Perovskite solar cells—towards commercialization. ACS Energy Lett. 2, 1749–1751 (2017).
Galagan, Y. Perovskite solar cells: toward industrial-scale methods. J. Phys. Chem. Lett. 9, 4326–4335 (2018).
Li, Z. et al. Acid additives enhancing the conductivity of spiro-OMeTAD toward high-efficiency and hysteresis-less planar perovskite solar cells. Adv. Energy Mater. 7, 1601451 (2017).
Swartwout, R., Hoerantner, M. T. & Bulović, V. Scalable deposition methods for large‐area production of perovskite thin films. Energy Environ. Mater. 2, 119–145 (2019).
Authorisation. European Chemicals Agency (ECHA); https://echa.europa.eu/substances-of-very-high-concern-identification-explained (accessed 16 November 2020).
Jimenez-Gonzalez, C. Life cycle considerations of solvents. Curr. Opin. Green Sustain. Chem. 18, 66–71 (2019).
Celik, I., Song, Z., Phillips, A. B., Heben, M. J. & Apul, D. Life cycle analysis of metals in emerging photovoltaic (PV) technologies: a modeling approach to estimate use phase leaching. J. Clean. Prod. 186, 632–639 (2018).
Zhang, J., Gao, X., Deng, Y., Zha, Y. & Yuan, C. Comparison of life cycle environmental impacts of different perovskite solar cell systems. Sol. Energy Mater. Sol. Cells 166, 9–17 (2017).
Alberola-Borràs, J.-A. et al. Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment. Sol. Energy Mater. Sol. Cells 179, 169–177 (2018).
Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).
Monteiro Lunardi, M., Wing Yi Ho-Baillie, A., Alvarez-Gaitan, J. P., Moore, S. & Corkish, R. A life cycle assessment of perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 25, 679–695 (2017).
Espinosa, N., Serrano-Luján, L., Urbina, A. & Krebs, F. C. Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303–310 (2015).
Sánchez, S. et al. Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Mater. Today 31, 39–46 (2019).
Alberola-Borràs, J.-A., Vidal, R. & Mora-Seró, I. Evaluation of multiple catioNAnion perovskite solar cells through life cycle assessment. Sustain. Energy Fuels 2, 1600–1609 (2018).
Alberola-Borràs, J.-A. et al. Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process. iScience 9, 542–551 (2018).
Gardner, K. L. et al. Nonhazardous solvent systems for processing perovskite photovoltaics. Adv. Energy Mater. 6, 1600386 (2016).
Galagan, Y. et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 8, 1801935 (2018).
Wang, J. et al. Highly efficient perovskite solar cells using non-toxic industry compatible solvent system. Sol. RRL 1, 1700091 (2017).
Liu, X., Wu, J., Yang, Y., Wu, T. & Guo, Q. Pyridine solvent engineering for high quality anion–cation-mixed hybrid and high performance of perovskite solar cells. J. Power Sources 399, 144–150 (2018).
Babaei, A. et al. Hansen theory applied to the identification of nonhazardous solvents for hybrid perovskite thin-films processing. Polyhedron 147, 9–14 (2018).
Noel, N. K. et al. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 10, 145–152 (2017).
Zhi, L. et al. Perovskite solar cells fabricated by using an environmental friendly aprotic polar additive of 1,3-dimethyl-2-imidazolidinone. Nanoscale Res. Lett. 12, 632 (2017).
Hauschild, M. Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 18, 683–697 (2013).
Rosenbaum, R. K. et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 710–727 (2011).
Saouter, E., Biganzoli, F., Pant, R., Sala, S. & Versteeg, D. Using REACH for the EU environmental footprint: building a usable ecotoxicity database, part I. Integr. Environ. Assess. Manag. 15, 783–795 (2019).
Capello, C., Fischer, U. & Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green. Chem. 9, 927–934 (2007).
Hamill, J. C., Schwartz, J. & Loo, Y. L. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett. 3, 92–97 (2018).
Gutmann, V. Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21, 661–670 (1976).
Bruening, K. & Tassone, C. J. Antisolvent processing of lead halide perovskite thin films studied by in situ X-ray diffraction. J. Mater. Chem. A 6, 18865–18870 (2018).
Cao, X. et al. A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 11, 7639–7654 (2019).
Jung, K., Chae, W.-S., Park, Y. C., Kim, J. & Lee, M.-J. Influence of Lewis base HMPA on the properties of efficient planar MAPbI3 solar cells fabricated by one-step process assisted by Lewis acid–base adduct approach. Chem. Eng. J. 380, 122436 (2020).
Gao, L. L., Zhang, K. J., Chen, N. & Yang, G. J. Boundary layer tuning induced fast and high performance perovskite film precipitation by facile one-step solution engineering. J. Mater. Chem. A 5, 18120–18127 (2017).
Belaissaoui, B., Le Moullec, Y. & Favre, E. Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: a generic approach. Energy 95, 291–302 (2016).
Wu, J. J., Muruganandham, M. & Chen, S. H. Degradation of DMSO by ozone-based advanced oxidation processes. J. Hazard. Mater. 149, 218–225 (2007).
ecoinvent Database (ecoinvent, accessed 27 September 2019); https://www.ecoinvent.org/references/references.html
Masi, S. et al. Chemi-structural stabilization of formamidinium lead iodide perovskite by using embedded quantum dots. ACS Energy Lett. 5, 418–427 (2020).
Bruening, K. et al. Scalable fabrication of perovskite solar cells to meet climate targets. Joule 2, 2464–2476 (2018).
Rosenbaum, R. et al. USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13, 532–546 (2008).
Fantke, P. (ed.) USEtox 2.0 User Manual Version 2 (USEtox Team, 2015).
Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).
QSAR Toolbox v.4.3.1 (OECD, 2019).
Estimation Programs Interface Suite for Microsoft Windows v.4.11 (US EPA, 2017).
Card, M. L. et al. History of EPI SuiteTM and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. Environ. Sci. Process. Impacts 19, 203–212 (2017).
Müller, N., de Zwart, D., Hauschild, M., Kijko, G. & Fantke, P. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment. Environ. Toxicol. Chem. 36, 492–500 (2017).
Igos, E. et al. Development of USEtox characterisation factors for dishwasher detergents using data made available under REACH. Chemosphere 100, 160–166 (2014).
Aurisano, N., Albizzati, P. F., Hauschild, M. & Fantke, P. Extrapolation factors for characterizing freshwater ecotoxicity effects. Environ. Toxicol. Chem. 38, 2568–2582 (2019).
Gustavsson, M. B., Hellohf, A. & Backhaus, T. Evaluating the environmental hazard of industrial chemicals from data collected during the REACH registration process. Sci. Total Environ. 586, 658–665 (2017).
Global Burden of Disease Study 2017 (GBD 2017) Data Resources (IHME, accessed 11 November 2019); http://ghdx.healthdata.org/gbd-2017
Pask, F. et al. Systematic approach to industrial oven optimisation for energy saving. Appl. Therm. Eng. 71, 72–77 (2014).
Nikolaychik, L. V. Modeling the drying process of thin coatings. In IS&T’s 50th Annual Conference (ed. Brandenburg, E.) 502–507 (The Society for Imaging Science and Technology, 1997).
NIST Standard Reference Database (NIST Chemistry WebBook, 2017); https://doi.org/10.18434/T4D303
Gooding, C. H. in Encyclopedia of Chemical Processing and Design Vol. 22 (ed. Mcketta, J. J.) 162–164 (Marcel Dekker, 1985).
Joback, K. G. & Reid, R. C. Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987).
Poling, B. E., Prausnitz, J. M. & O’Connell, J. The Properties of Gases and Liquids (McGraw-Hill, 2001).
Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P. & Rooney, D. W. Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J. Chem. Eng. Data 53, 2148–2153 (2008).
Valderrama, J. O. & Robles, P. A. Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind. Eng. Chem. Res. 46, 1338–1344 (2007).
Avci, A. & Can, M. Analysis of the drying process on unsteady forced convection in thin films of ink. Appl. Therm. Eng. 19, 641–657 (1999).
Lugg, G. A. Diffusion coefficients of some organic and other vapors in air. Anal. Chem. 40, 1072–1077 (1968).
Tang, M. J., Shiraiwa, M., Pöschl, U., Cox, R. A. & Kalberer, M. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations. Atmos. Chem. Phys. 15, 5585–5598 (2015).
Mirkhani, S. A., Gharagheizi, F. & Sattari, M. A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition. Chemosphere 86, 959–966 (2012).
Zúñiga-Moreno, A. & Galicia-Luna, L. A. Compressed liquid densities and excess volumes for the binary system CO2 + N,N-dimethylformamide (DMF) from (313 to 363) K and pressures up to 25 MPa. J. Chem. Eng. Data 50, 1224–1233 (2005).
Schaffner, K., Bradley, K., Randall, D. & Sorrels, J. L. EPA Air Pollution Control Cost Manual (ed. Mussati, D. C.) Ch. 2 (US EPA, 2017).
Kroenlein, K. et al. NIST/TRC Web Thermo Tables (WTT) (NIST, accessed 26 November 2019); https://wtt-pro.nist.gov/wtt-pro/#default/B;50,50/A;0,0,508,422;help,about/
Doka, G. Life Cycle Inventories of Waste Treatment Services ecoinvent report no. 13 (Swiss Centre for Life Inventories, 2003).
SimaPro: The World’s Leading LCA Software (PRé Consultants, 2019); https://simapro.com/
Capello, C., Hellweg, S., Badertscher, B. & Hungerbühler, K. Life-cycle inventory of waste solvent distillation: statistical analysis of empirical data. Environ. Sci. Technol. 39, 5885–5892 (2005).
Guo, L., Wang, O., Zhao, D., Gan, X. & Liu, H. The deposition of (CH3NH3)2Pb(SCN)2I2 thin films and their application in perovskites solar cells. Polyhedron 145, 16–21 (2018).
Wang, B., Wong, K. Y., Yang, S. & Chen, T. Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells. J. Mater. Chem. A 4, 3806–3812 (2016).
Park, B. W. et al. Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. J. Mater. Chem. A 3, 21760–21771 (2015).
Xie, L., Cho, A.-N., Park, N.-G. & Kim, K. Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive. ACS Appl. Mater. Interfaces 10, 9390–9397 (2018).
Lee, J. W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).
Acknowledgements
We acknowledge financial support from Generalitat Valenciana (Spain) under Project Q-Devices PROMETEO/2018/098. R.V. was partially supported by an International Academic Fellowship from Ministerio de Ciencia, Innovación y Universidades (Spain) and reference PRX19/00378, which permitted a research visit to the National Renewable Laboratory of Energy (NREL). This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy for the US Department of Energy (DOE) under contract no. DE-AC36-08GO28308. Funding for work at NREL was provided by DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under the De-risking Halide Perovskite Solar Cells Program and based upon work under agreement no. DE-EE0008174. T.H.S. acknowledges the Department of Chemistry and the Office of Graduate Studies at the Colorado School of Mines for financial support. We thank B. Kazaishvili for assistance with graphics and R. Kerner for helpful discussions. The views expressed in the article do not necessarily represent the views of the DOE or the US government.
Author information
Authors and Affiliations
Contributions
R.V., J.J.B. and J.M.L. designed the study. R.V. and J.M.L. wrote the manuscript. R.V. performed the analysis. J.A.A.B. modelled DMPU and DMI reaction synthesis. J.L.G.M. assembled life cycle inventories. D.T.M. reviewed solvent removal. J.M.L., D.T.M. and T.H.S. determined solvent selection. I.M.-S. and S.N.H. assisted in the work analysis.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Sustainability thanks Youn-Joo An, Nam-Gyu Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–12, Tables 1–25, Figs. 1–4, Schemes 1,2 and refs. 1–102.
Rights and permissions
About this article
Cite this article
Vidal, R., Alberola-Borràs, JA., Habisreutinger, S.N. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat Sustain 4, 277–285 (2021). https://doi.org/10.1038/s41893-020-00645-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-020-00645-8
This article is cited by
-
Recent progress of eco-friendly manufacturing process of efficient perovskite solar cells
Nano Convergence (2023)
-
Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
Nature Communications (2023)
-
Lead immobilization for environmentally sustainable perovskite solar cells
Nature (2023)
-
Green solvent enabled scalable processing of perovskite solar cells with high efficiency
Nature Sustainability (2023)
-
A green solvent increases the stability of a perovskite ink for scalable processing
Nature Sustainability (2023)