Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative to positive shifts in diversity effects on soil nitrogen over time

Abstract

Soil nitrogen (N) availability is of critical importance to the productivity of terrestrial ecosystems worldwide. Plant diversity continues to decline globally due to habitat conversion and degradation, but its influence on soil N remains uncertain. By conducting a global meta-analysis of 1,650 paired observations of soil N in plant species mixtures and monocultures from 149 studies, we show that, on average across observations, soil total N is 6.1% higher in species mixtures. This mixture effect on total N becomes more positive with the number of species in mixtures and with stand age. The mixture effects on net N mineralization rate and inorganic N concentrations shift from negative in young stands to positive in older stands with greater positive effects in more-diverse mixtures. These effects of mixtures were consistent among cropland, forest and grassland ecosystems and held across climate zones. Our results suggest that plant diversity conservation not only enhances the productivity of current vegetation but also increases soil N retention that will sustain the productivity of future vegetation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual diagram of the influence of plant diversity on the processes that control soil N.
Fig. 2: Comparison of soil total N, inorganic N and net N mineralization rate in species mixtures versus monocultures.
Fig. 3: Comparison of soil NO3, NH4+ and NO3/NH4+ in species mixtures versus monocultures.
Fig. 4: Predicted responses of soil total N and inorganic N to a range of plant species richness (SR) reductions at the establishment.

Similar content being viewed by others

Data availability

The source data underlying Figs. 1–4, Supplementary Figs. 18 and Supplementary Tables 111 are archived in Figshare (https://doi.org/10.6084/m9.figshare.11400552).

Code availability

The R scripts needed to reproduce the analysis is archived in Figshare (https://doi.org/10.6084/m9.figshare.11400552).

References

  1. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13, 87–115 (1991).

    Google Scholar 

  2. Yuan, Z. Y. & Chen, H. Y. H. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. Lond. B 279, 3796–3802 (2012).

    CAS  Google Scholar 

  3. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Google Scholar 

  4. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    CAS  Google Scholar 

  5. Marschner, H. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Academic Press, 2012).

  6. Niklaus, P. A., Wardle, D. A. & Tate, K. R. Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant Soil 282, 83–98 (2006).

    CAS  Google Scholar 

  7. Li, Z. et al. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. 25, 1078–1088 (2019).

    Google Scholar 

  8. Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003869 (2011).

  9. Cong, W. F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).

    CAS  Google Scholar 

  10. Mueller, K. E., Hobbie, S. E., Tilman, D. & Reich, P. B. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob. Change Biol. 19, 1249–1261 (2013).

    Google Scholar 

  11. von Felten, S. et al. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90, 1389–1399 (2009).

    Google Scholar 

  12. Le Roux, X. et al. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. PLoS ONE https://doi.org/10.1371/journal.pone.0061069 (2013).

  13. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Google Scholar 

  14. Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).

    CAS  Google Scholar 

  15. Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).

    Google Scholar 

  16. McKane, R. B. et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71 (2002).

    CAS  Google Scholar 

  17. Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere https://doi.org/10.1002/ecs2.1619 (2016).

  18. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS  Google Scholar 

  19. Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).

    CAS  Google Scholar 

  20. Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).

    Google Scholar 

  21. Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).

    Google Scholar 

  22. Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).

    Google Scholar 

  23. Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).

    Google Scholar 

  24. Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).

    Google Scholar 

  25. Ma, Z. L. & Chen, H. Y. H. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 121, 130–137 (2018).

    CAS  Google Scholar 

  26. Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).

    CAS  Google Scholar 

  27. Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).

    Google Scholar 

  28. Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61 (2016).

    Google Scholar 

  29. Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).

    Google Scholar 

  30. Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

    Google Scholar 

  31. Oram, N. J. et al. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. 106, 265–277 (2018).

    CAS  Google Scholar 

  32. Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Google Scholar 

  33. Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).

    Google Scholar 

  34. Leimer, S. et al. Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. Biogeochemistry 131, 339–353 (2016).

    CAS  Google Scholar 

  35. van Ruijven, J. & Berendse, F. Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).

    Google Scholar 

  36. Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).

    CAS  Google Scholar 

  37. Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).

    CAS  Google Scholar 

  38. Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  39. Post, W. M., Pastor, J., Zinke, P. J. & Stangenberger, A. G. Global patterns of soil-nitrogen storage. Nature 317, 613–616 (1985).

    Google Scholar 

  40. Fowler, D., Pyle, J. A., Raven, J. A. & Sutton, M. A. The global nitrogen cycle in the twenty-first century: introduction. Phil. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2013.0165 (2013).

  41. Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Google Scholar 

  42. Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).

    Google Scholar 

  43. Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58 (2015).

    CAS  Google Scholar 

  44. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The, P. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    Google Scholar 

  45. Plot Digitizer v.2.0 (Faculty in the Department of Physics at the University of South Alabama, 2020); https://go.nature.com/2Gj5qW0

  46. Trabucco, A. & Zomer, R. J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org

  47. UNEP World Atlas of Desertification (Edward Arnold Publication, 1997).

  48. Chen, H. Y. H. & Brassard, B. W. Intrinsic and extrinsic controls of fine root life span. Crit. Rev. Plant Sci. 32, 151–161 (2013).

    Google Scholar 

  49. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  50. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  Google Scholar 

  51. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    CAS  Google Scholar 

  52. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package v.1.1-23 (2020); https://cran.r-project.org/web/packages/lme4/index.html

  53. Cohen, J., Cohen, P., West, S. G. & Alken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Routledge, 2013).

  54. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  55. Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    Google Scholar 

  56. Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).

    Google Scholar 

  57. Bartoń, K. MuMIn: multi-model inference. R package v.1.42.1 (2018); https://cran.r-project.org/web/packages/MuMIn/index.html

  58. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  59. Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  60. Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

  61. Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Google Scholar 

  62. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  Google Scholar 

  63. Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.3.3.0 (2020); https://cran.r-project.org/web/packages/DHARMa/index.html

  64. Smith, J. L. & Doran, J. W. in Methods for Assessing Soil Quality (eds Doran, J. W. & Jones, A. J.) 169–185 (Soil Science Society of America, 1997).

  65. Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Google Scholar 

  66. R Core Team R: A Language and Environment for Statistical Computing v.4.0.0 (R Foundation for Statistical Computing, 2020).

Download references

Acknowledgements

We thank the authors whose work is included in this meta-analysis. We thank X. Chen for his suggestions on data analysis. This study was funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2019–05109, RGPIN-2014–04181, RTI-2017–00358, STPGP428641, and STPGP506284), Long-Term Ecological Research (LTER) grant DEB-1831944 and Biological Integration Institutes grant NSF-DBI-2021898.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and H.Y.H.C. designed research; X.C. collected data; X.C. performed the meta-analysis and wrote the first draft of the manuscript; and X.C., H.Y.H.C., E.B.S., C.C. and P.B.R. wrote interactively through multiple rounds of revisions.

Corresponding author

Correspondence to Han Y. H. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Sustainability thanks Markus Lange, Gabriele Midolo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–11.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, H.Y.H., Searle, E.B. et al. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat Sustain 4, 225–232 (2021). https://doi.org/10.1038/s41893-020-00641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00641-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing