Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of local and landscape complexity on the stability of field-level pest control

Abstract

Agricultural production has increased dramatically in the past 50 years, supported, in part, by the simplification of agricultural landscapes. While the benefits of increased food production are difficult to dispute, simplification, at both the local and landscape level, has fuelled declines in biodiversity and ecosystem services. In addition to the concerns that this loss of complexity necessitates higher levels of pesticide use in general, local and landscape simplification may also increase pest outbreaks and, consequently, infrequent but particularly high pesticide use with potentially damaging consequences for the environment and human health. We find that increasing cropland in the landscape—and larger fields generally—increase the level and variability of pesticide use while crop diversity has the opposite effect, as predicted by ecological theory. In all cases, accounting for non-random planting decisions and farmer-specific behaviour strongly influences the magnitude of the estimated statistical relationships. This suggests that, while complexity increases stability and reduces high deviations in insecticide use, accounting for crop and farmer-specific characteristics is crucial for statistical inference and sound scientific understanding.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Distribution of major crops in Kern County, 2005.
Fig. 2: Effect of local and landscape characteristics on the level, variance and semi-variance of annual insecticide use.
Fig. 3: Effect of cropland extent and crop diversity on level, variance and semi-variance of insecticide use at different distances from the focal crop field.
Fig. 4: Individual crop models (including year dummies) for level, variance and semi-variance of insecticide use.

Similar content being viewed by others

Data availability

All data are freely and publicly available from the Kern CAC office (http://www.kernag.com/gis/gis-data.asp) and CA Department of Pesticide Regulation (https://www.cdpr.ca.gov/docs/pur/purmain.htm). Administrative boundary polygons for Fig. 1 and Supplementary Fig. 8 are derived from the U.S. Census Bureau TIGER/Line shapefiles (2016; https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2016.html). Figure 1 is derived from raw data. Underlying regression output for Figs. 24 is presented in Supplementary Tables. Data used to repeat the main analysis are available in Supplementary Information.

Code availability

No new or custom computer code packages were developed. Stata code to repeat the main analysis is available in Supplementary Information.

References

  1. Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    Google Scholar 

  2. Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).

    Google Scholar 

  3. Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    CAS  Google Scholar 

  4. Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).

    Google Scholar 

  5. Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).

    Google Scholar 

  6. McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  Google Scholar 

  7. MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

    Google Scholar 

  8. Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Google Scholar 

  9. Tilman, D. & Wedin, D. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS  Google Scholar 

  10. McNaughton, S. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Natur. 111, 515–525 (1977).

    Google Scholar 

  11. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS  Google Scholar 

  12. Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).

    CAS  Google Scholar 

  13. Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    Google Scholar 

  14. Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 111, E7863–E7870 (2018).

    Google Scholar 

  15. Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    Google Scholar 

  16. Larsen, A. E. & Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).

    CAS  Google Scholar 

  17. Sexton, S. E., Lei, Z. & Zilberman, D. The economics of pesticides and pest control. Int. Rev. Envir. Resour. Econ. 1, 271–326 (2007).

    Google Scholar 

  18. Waterfield, G. & Zilberman, D. Pest management in food systems: an economic perspective. Annu. Rev. 37, 223–245 (2012).

  19. O’Rourke, M. E. & Jones, L. E. Analysis of landscape-scale insect pest dynamics and pesticide use: an empirical and modeling study. Ecol. Appl. 21, 3199–3210 (2011).

    Google Scholar 

  20. Gross, K. & Rosenheim, J. A. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21, 2770–2780 (2011).

    Google Scholar 

  21. Rosenheim, J. A. & Meisner, M. H. Ecoinformatics can reveal yield gaps associated with crop–pest interactions: a proof-of-concept. PLoS ONE 8, e80518 (2013).

    Google Scholar 

  22. Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73, 232–239 (2016).

    Google Scholar 

  23. Farrar, J. J., Baur, M. E. & Elliott, S. F. Adoption of IPM practices in grape, tree fruit, and nut production in the western United States. J. Integr. Pest Manag. 7, 8 (2016).

  24. Rosenheim, J. A., Cass, B. N., Kahl, H. & Steinmann, K. P. Variation in pesticide use across crops in California agriculture: economic and ecological drivers. Sci. Total Environ. 733, 138683 (2020).

    CAS  Google Scholar 

  25. Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).

    Google Scholar 

  26. Larsen, A. E., Patton, M. & Martin, E. A. High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 651, 828–837 (2019).

    CAS  Google Scholar 

  27. Dudley, N. et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv. 209, 449–453 (2017).

    Google Scholar 

  28. Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).

    CAS  Google Scholar 

  29. Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: evidence from the Clean Air Act of 1970. Q. J. Econ. 118, 1121–1167 (2003).

    Google Scholar 

  30. Larsen, A. E., Gaines, S. D. & Deschenes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

  31. California Agricultural Statistics Review 2017–2018 1–105 (California Department of Food & Agriculture, 2018).

  32. Summary of Pesticide Use Report Data 2017 (California Department of Pesticide Regulation, 2018).

  33. Bourque, K. et al. Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci. Total Environ. 670, 865–875 (2019).

    CAS  Google Scholar 

  34. Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Google Scholar 

  35. Just, R. E. & Pope, R. D. Stochastic specification of production functions and economic implications. J. Econ. 7, 67–86 (1978).

    Google Scholar 

  36. Murdoch, W. W. Diversity, complexity, stability and pest control. J. Appl. Ecol. 12, 795–807 (1975).

    Google Scholar 

  37. Van Emden, H. F. & Williams, G. Insect stability and diversity in agro-ecosystems. Annu. Rev. Entomol. 19, 455–475 (1974).

    Google Scholar 

  38. Edwards, C. B., Rosenheim, J. A. & Segoli, M. Aggregating fields of annual crops to form larger-scale monocultures can suppress dispersal-limited herbivores. Theor. Ecol. 11, 321–331.

  39. O’Rourke, M. E., Rienzo-Stack, K. & Power, A. G. A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791 (2011).

    Google Scholar 

  40. Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in Western Europe. Proc. R. Soc. B 285, 1872 (2018).

    Google Scholar 

  41. Holzschuh, A., Dewenter, I. S. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 79, 491–500 (2010).

    Google Scholar 

  42. Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).

    Google Scholar 

  43. Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).

    Google Scholar 

  44. Zhao, Z. & Reddy, G. V. P. Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biol. Control 128, 17–23 (2019).

    Google Scholar 

  45. Costello, C., Quérou, N. & Tomini, A. Private eradication of mobile public bads. Eur. Econ. Rev. 94, 23–44 (2017).

    Google Scholar 

  46. Noack, F. & Larsen, A. The contrasting effects of farm size on farm incomes and food production. Environ. Res. Lett. 14, 084024 (2019).

    Google Scholar 

  47. Gong, Y., Baylis, K., Kozak, R. & Bull, G. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agric. Econ. 47, 411–421 (2016).

    Google Scholar 

  48. Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).

    Google Scholar 

  49. Larsen, A. E., Farrant, D. N. & MacDonald, A. J. Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric. Ecosyst. Environ. 289, 106741 (2020).

    CAS  Google Scholar 

  50. Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5, 497–526 (2005).

    CAS  Google Scholar 

  51. Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).

    Google Scholar 

  52. Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).

    CAS  Google Scholar 

  53. Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Front. Public Health 4, 320–328 (2016).

    Google Scholar 

  54. Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 14865–14867 (2017).

    CAS  Google Scholar 

  55. Estrada, J. Mean-semivariance optimization: a heuristic approach. J. Appl. Financ. 18, 1–16 (2008).

    Google Scholar 

  56. Finger, R., Dalhaus, T., Allendorf, J. & Hirsch, S. Determinants of downside risk exposure of dairy farms. Eur. Rev. Agric. Econ. 45, 641–674 (2018).

    Google Scholar 

  57. Miranda, M. J. & Glauber, J. W. Providing crop disaster assistance through a modified deficiency payment program. Am. J. Agric. Econ. 73, 1233–1243 (1991).

    Google Scholar 

  58. Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

  59. Cabas, J., Weersink, A. & Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 101, 599–616 (2009).

    Google Scholar 

  60. Isik, M. & Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 38, 835–844 (2006).

    Google Scholar 

  61. Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).

    Google Scholar 

  62. Bellemare, M. F. & Wichman, C. J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 82, 50–61 (2019).

    Google Scholar 

  63. Conley, T. G. & Molinari, F. Spatial correlation robust inference with errors in location or distance. J. Econ. 140, 76–96 (2007).

    Google Scholar 

  64. Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).

    CAS  Google Scholar 

  65. Fetzer, T. Can Workfare Programs Moderate Conflict? Evidence from India The Warwick Economics Research Paper Series (TWERPS) 1220 (University of Warwick, Department of Economics, 2019); https://ideas.repec.org/p/wrk/warwec/1220.html

Download references

Acknowledgements

We acknowledge the Kern CAC office and the CA Department of Pesticide Regulation for producing and maintaining the publicly available data used here. We thank F. Davis, D. N. Farrant, B. Halpern, B. Kendall, B. Lee, H. Lenihan, A. MacDonald, M. Moritz, N. Parker and N. Tague for insightful comments.

Author information

Authors and Affiliations

Authors

Contributions

A.E.L. conceived and conducted the study, drafted the manuscript and contributed substantially to revisions. F.N. contributed methodological approaches, drafted the manuscript and contributed substantially to revisions.

Corresponding authors

Correspondence to Ashley E. Larsen or Frederik Noack.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Audrey Alignier, Niklas Möhring and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–9 and Tables 1–12.

Reporting Summary

Supplementary Data 1

Data needed to repeat the main analysis.

Supplementary Data 2

Code needed to repeat the main analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, A.E., Noack, F. Impact of local and landscape complexity on the stability of field-level pest control. Nat Sustain 4, 120–128 (2021). https://doi.org/10.1038/s41893-020-00637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00637-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene