Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2


The presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although advanced oxidation processes that rely on highly reactive radicals to destroy organic contaminants are appealing treatment options, substantial energy and chemical inputs limit their practical applications. Here we demonstrate that Cu single atoms incorporated in graphitic carbon nitride can catalytically activate H2O2 to generate hydroxyl radicals at pH 7.0 without energy input, and show robust stability within a filtration device. We further design an electrolysis reactor for the on-site generation of H2O2 from air, water and renewable energy. Coupling the single-atom catalytic filter and the H2O2 electrolytic generator in tandem delivers a wastewater treatment system. These findings provide a promising path toward reducing the energy and chemical demands of advanced oxidation processes, as well as enabling their implementation in remote areas and isolated communities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic drawing of our wastewater treatment system.
Fig. 2: Characterization of Cu-C3N4.
Fig. 3: Catalytic activity and degradation product.
Fig. 4: Fenton filter.
Fig. 5: Electrodes and electrolytes of H2O2 electrolyser.
Fig. 6: Reactor design and performance of the H2O2 electrolyser.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.


  1. Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018).

    CAS  Article  Google Scholar 

  2. Chuang, Y.-H., Chen, S., Chinn, C. J. & Mitch, W. A. Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse. Environ. Sci. Technol. 51, 13859–13868 (2017).

    CAS  Article  Google Scholar 

  3. Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    CAS  Article  Google Scholar 

  4. Glaze, W. H., Kang, J.-W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9, 335–352 (1987).

    CAS  Article  Google Scholar 

  5. Katsoyiannis, I. A., Canonica, S. & von Gunten, U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res. 45, 3811–3822 (2011).

  6. Neyens, E. & Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98, 33–50 (2003).

    CAS  Article  Google Scholar 

  7. Nidheesh, P. V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv. 5, 40552–40577 (2015).

    CAS  Article  Google Scholar 

  8. Pham, A. L.-T., Lee, C., Doyle, F. M. & Sedlak, D. L. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 43, 8930–8935 (2009).

    CAS  Article  Google Scholar 

  9. Lyu, L., Zhang, L., Wang, Q., Nie, Y. & Hu, C. Enhanced Fenton catalytic efficiency of γ-Cu–Al2O3 by σ-Cu2+–ligand complexes from aromatic pollutant degradation. Environ. Sci. Technol. 49, 8639–8647 (2015).

    Article  Google Scholar 

  10. Costa, R. C. C. et al. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J. Hazard. Mater. 129, 171–178 (2006).

    CAS  Article  Google Scholar 

  11. Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    CAS  Article  Google Scholar 

  12. Navalon, S., Alvaro, M. & Garcia, H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl. Catal. B 99, 1–26 (2010).

    CAS  Article  Google Scholar 

  13. Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Heterogeneous fenton catalysts based on activated carbon and related materials. ChemSusChem 4, 1712–1730 (2011).

    CAS  Article  Google Scholar 

  14. Bataineh, H., Pestovsky, O. & Bakac, A. pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem. Sci. 3, 1594–1599 (2012).

    CAS  Article  Google Scholar 

  15. Lin, S.-S. & Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 32, 1417–1423 (1998).

    CAS  Article  Google Scholar 

  16. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. Engl. 45, 6962–6984 (2006).

    CAS  Article  Google Scholar 

  17. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    CAS  Article  Google Scholar 

  18. Kim, H. W. et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018).

    Article  Google Scholar 

  19. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    CAS  Article  Google Scholar 

  20. Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    CAS  Article  Google Scholar 

  21. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    CAS  Article  Google Scholar 

  22. Chen, Z. et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017).

    Article  Google Scholar 

  23. Murayama, T. & Yamanaka, I. Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell. J. Phys. Chem. C. 115, 5792–5799 (2011).

    CAS  Article  Google Scholar 

  24. Yamanaka, I. & Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. Int. Ed. Engl. 47, 1900–1902 (2008).

    CAS  Article  Google Scholar 

  25. Bojdys, M. J., Müller, J.-O., Antonietti, M. & Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry 14, 8177–8182 (2008).

    CAS  Article  Google Scholar 

  26. Liu, J., Zhang, T., Wang, Z., Dawson, G. & Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011).

    CAS  Article  Google Scholar 

  27. Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C. & Tayade, R. J. Study on UV-LED/TiO2 process for degradation of rhodamine B dye. Chem. Eng. J. 169, 126–134 (2011).

    CAS  Article  Google Scholar 

  28. He, Z. et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. J. Hazard. Mater. 162, 1477–1486 (2009).

    CAS  Article  Google Scholar 

  29. Fu, H., Pan, C., Yao, W. & Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432–22439 (2005).

    CAS  Article  Google Scholar 

  30. Yamanaka, K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn. J. Appl. Phys. 28, 632 (1989).

  31. Feng, D. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. Engl. 51, 10307–10310 (2012).

    CAS  Article  Google Scholar 

Download references


Part of this work was performed at the Stanford Nano Shared Facilities, supported by the National Science Foundation under award no. ECCS-1542152. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. The teratogenicity experiment was supported by NIH grant no. R35 GM127030.

Author information

Authors and Affiliations



J.X. and Y.C. conceived the idea. J.X. performed the experiments. X.Z. performed the EXAFS and STEM characterizations. Z.F. performed the teratogenicity studies. Z.L. synthesized the O-SP. W.H., Y.L. and Z.Z. performed the HR-TEM and EDS characterizations. D.V. and Y.L. helped with the HPLC and LC–MS measurements. S.D. helped with the STEM characterizations. K.W. synthesized Cu-TMCPP. Z.L. and G.C. helped with quantification of H2O2. H.W. and Z.Z. helped with electrochemistry experiments. J.X. and Y.C. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Discussion.

Supplementary Video

Filtration process of the Fenton filter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zheng, X., Feng, Z. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat Sustain 4, 233–241 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing