A highly efficient triboelectric negative air ion generator

Abstract

Negative air ions (NAIs) have been widely harnessed in recent technologies for air pollutant removal and their beneficial effects on human health, including allergy relief and neurotransmitter modulation. Herein, we report a corona-type, mechanically stimulated triboelectric NAI generator. Using the high output voltage from a triboelectric nanogenerator, air molecules can be locally ionized from carbon fibre electrodes through various movements, with the electron–ion transformation efficiency reaching up to 97%. Using a palm-sized device, 1 × 1013 NAIs (theoretically 1 × 105 ions cm−3 in 100 m3 space) are produced in one sliding motion, and particulate matter (PM 2.5) can be rapidly reduced from 999 to 0 µg m−3 in 80 s (in a 5,086 cm3 glass chamber) under an operation frequency of 0.25 Hz. This triboelectric NAI generator is simple, safe and effective, providing an appealing alternative, sustainable avenue to improving health and contributing to a cleaner environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Prototype of the MSNG.
Fig. 2: Output quantification of TENG for air ionization.
Fig. 3: Analysis of the working mechanism of the MSNG.
Fig. 4: Performance of the MSNG.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors (V.K.S.H. and Z.L.W.) upon reasonable request.

References

  1. 1.

    Krueger, A. P. & Reed, E. J. Biological impact of small air ions. Science 193, 1209–1213 (1976).

    CAS  Article  Google Scholar 

  2. 2.

    Jiang, S. Y., Ma, A. & Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 19, 2966 (2018).

    Article  Google Scholar 

  3. 3.

    Ryushi, T. et al. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int. J. Biometeorol. 41, 132–136 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    Sawant, V. S., Meena, G. S. & Jadhav, D. B. Effect of negative air ions on fog and smoke. Aerosol Air Qual. Res. 12, 1007–1015 (2012).

    Article  Google Scholar 

  5. 5.

    Livanova, L. M., Levshina, I. P., Nozdracheva, L. V., Elbakidze, M. G. & Airapetyants, M. G. The protective effects of negative air ions in acute stress in rats with different typological behavioral characteristics. Neurosci. Behav. Physiol. 29, 393–395 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Wu, C. C. & Lee, G. W. M. Oxidation of volatile organic compounds by negative air ions. Atmos. Environ. 38, 6287–6295 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    Lin, H. F. & Lin, J. M. Generation and determination of negative air ions. J. Anal. Test. 1, 6 (2017).

    Article  Google Scholar 

  8. 8.

    Richardson, G., Eick, S. A., Harwood, D. J., Rosen, K. G. & Dobbs, F. Negative air ionisation and the production of hydrogen peroxide. Atmos. Environ. 37, 3701–3706 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Peterson, M. S., Zhang, W., Fisher, T. S. & Garimella, S. V. Low-voltage ionization of air with carbon-based materials. Plasma Sources Sci. Technol. 14, 654–660 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Chen, C. H., Huang, B. R., Lin, T. S., Chen, I. C. & Hsu, C. L. A new negative ion generator using ZnO nanowire array. J. Electrochem. Soc. 153, G894–G896 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Nakamura, T. & Kubo, T. Tourmaline group crystals reaction with water. Ferroelectrics 137, 13–31 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    Yeh, J. T. et al. Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites. J. Appl. Polym. Sci. 113, 1097–1110 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Fan, F. R., Tian, Z. Q. & Wang, Z. L. Flexible triboelectric generator! Nano Energy 1, 328–334 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Wu, C. S., Wang, A. C., Ding, W. B., Guo, H. Y. & Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).

    Article  Google Scholar 

  15. 15.

    Guo, H. Y. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3, eaat2516 (2018).

    Article  Google Scholar 

  16. 16.

    Liu, W. L. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, 1426 (2019).

    Article  Google Scholar 

  17. 17.

    Liu, Y. et al. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020).

    CAS  Article  Google Scholar 

  18. 18.

    Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Xu, W. H. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Chen, L. et al. Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater. 30, 1802405 (2018).

    Article  Google Scholar 

  21. 21.

    Shi, Q., He, T. & Lee, C. More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, S., Wang, H., He, T., Dong, S. & Lee, C. Switchable textile-triboelectric nanogenerators (S-TENGs) for continuous profile sensing application without environmental interferences. Nano Energy 69, 104462 (2020).

    CAS  Article  Google Scholar 

  23. 23.

    Leung, S. et al. A self‐powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018).

    Article  Google Scholar 

  24. 24.

    Zi, Y. L. et al. Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10, 4797–4805 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Li, A. Y., Zi, Y. L., Guo, H. Y., Wang, Z. L. & Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 12, 481–487 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Li, C. J. et al. Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 11, 10439–10445 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Zi, Y. L. et al. Field emission of electrons powered by a triboelectric nanogenerator. Adv. Funct. Mater. 28, 1800610 (2018).

    Article  Google Scholar 

  28. 28.

    Cheng, J. et al. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9, 3733 (2018).

    Article  Google Scholar 

  29. 29.

    Kim, H. J., Han, B., Woo, C. G. & Kim, Y. J. Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters. IEEE Trans. Ind. Appl. 53, 459–465 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Kim, H. J., Han, B., Kim, Y. J., Oda, T. & Won, H. Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer. Indoor Air 23, 369–378 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Tyndall, A. M., Starr, L. H. & Powell, C. F. The mobility of ions in air. Part IV.—Investigations by two new methods. Proc. R. Soc. Lond. A 121, 172–184 (1928).

    CAS  Article  Google Scholar 

  32. 32.

    Skalny, J. D. et al. Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int. J. Mass Spectrom. 272, 12–21 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Wu, C. C., Lee, G. W. M., Yang, S., Yu, K. P. & Lou, C. L. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci. Total Environ. 370, 245–253 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Lin, L., Li, Y., Khan, M., Sun, J. S. & Lin, J. M. Real-time characterization of negative air ion-induced decomposition of indoor organic contaminants by mass spectrometry. Chem. Commun. 54, 10687–10690 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Sabo, M., Okuyama, Y., Kucera, M. & Matejcik, S. Transport and stability of negative ions generated by negative corona discharge in air studied using ion mobility-oaTOF spectrometry. Int. J. Mass Spectrom. 334, 19–26 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    COMSOL Multiphysics v.5.2a (COMSOL, 2016); https://cn.comsol.com/comsol-multiphysics

  37. 37.

    Zi, Y. L. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Project of the Ministry of Science and Technology (grant no. 2016YFA0202704), the Fundamental Research Funds for the Central Universities (grant nos. 2019CDXZWL001 and 2018CDJDWL0011), the National Natural Science Foundation of China (grant no. 51572040) and the Ministry of Science and Technology (MOST), Taiwan (project nos. MOST-107-2221-E-260-016-MY3 and MOST-108-2918-I-260-004). We also thank the characterization service of the Analytical and Testing Center of Chongqing University.

Author information

Affiliations

Authors

Contributions

Z.L.W. supervised the project. H.G. and V.K.S.H. conceived the project and designed the experimental procedures. H.G., J.C. and L.W. fabricated the devices and performed the electrical performance measurements. Y.L. carried out the mass spectrometry analyses. C.A. helped to build the experimental setup. H.G. arranged the figures and analysed the data. H.G., J.C., L.W., V.K.S.H., J.H., A.C.W. and C.H. wrote the manuscript. All authors contributed to the paper.

Corresponding authors

Correspondence to Vincent K. S. Hsiao or Zhong Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Supplementary Video 1

Demonstration of the PM 2.5 purification process.

Supplementary Video 2

Demonstration of the heavy smog removal process.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Chen, J., Wang, L. et al. A highly efficient triboelectric negative air ion generator. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-00628-9

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing