Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High performance polyester reverse osmosis desalination membrane with chlorine resistance

Abstract

Chlorination is a common practice to prevent biofouling in municipal water supplies, wastewater reuse and seawater desalination. However, polyamide thin-film composite reverse osmosis membranes—the premier technology for desalination and clean-water production—structurally deteriorate when continually exposed to chlorine species. Here, we use layer-by-layer interfacial polymerization of 3,5-dihydroxybenzoic acid with trimesoyl chloride to fabricate a polyester thin-film composite reverse osmosis membrane that is chlorine-resistant in neutral and acidic conditions. Strong steric hindrance and an electron-withdrawing group effectively prevent direct aromatic chlorination, and residual OH groups capped with isophthaloyl dichloride preclude reaction with active chlorine. The poly(isophthalester) membrane exhibits high salt rejection (99.1 ± 0.2%) and water permeability (2.97 ± 0.13 l m−2 h−1 bar−1), even after demonstrating biofouling prevention with chlorine (50 mg l−1 of NaOCl for 15 min). We anticipate that our chlorine-resistant membrane will greatly advance reverse osmosis desalination as a sustainable technology to meet the global challenge of water supply.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design and fabrication procedure of the polyester RO membrane.
Fig. 2: Desalination performance, micro-scale morphology and DFT simulation results for fabricated polyester membranes.
Fig. 3: Performances and morphologies of PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.
Fig. 4: Performance recovery of fouled PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.

Data availability

Data are available upon reasonable request from the authors, according to their contributions. Source data are provided with this paper.

References

  1. 1.

    Phillip, W. A. & Elimelech, M. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  Google Scholar 

  2. 2.

    Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  3. 3.

    Stevens, D. M., Shu, J. Y., Reichert, M. & Roy, A. Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind. Eng. Chem. Res. 56, 10526–10551 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018–16025 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A. & Hilal, N. Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Gohil, J. M. & Suresh, A. K. Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies. J. Membr. Sci. 541, 108–126 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Verbeke, R., Gómez, V. & Vankelecom, I. F. J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog. Polym. Sci. 72, 1–15 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Stolov, M. & Freger, V. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environ. Sci. Technol. 53, 2618–2625 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environ. Sci. Technol. 46, 13184–13192 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Glater, J., Hong, N. & Elimelech, M. The search for a chlorine-resistant reverse osmosis membrane. Desalination 95, 325–345 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. 3, 112–120 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Tanugi, D. C., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    Article  Google Scholar 

  14. 14.

    Yao, Y. et al. Toward enhancing the chlorine resistance of reverse osmosis membranes: an effective strategy via an end-capping technology. Environ. Sci. Technol. 53, 1296–1304 (2019).

    Article  Google Scholar 

  15. 15.

    Hu, J., Pu, Y., Ueda, M., Zhang, X. & Wang, L. Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal. J. Membr. Sci. 520, 1–7 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Yao, Y. et al. A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies. J. Membr. Sci. 550, 470–479 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Zheng, J. et al. Reverse osmosis membrane with enhanced permselectivity for brackish water desalination. J. Membr. Sci. 565, 104–111 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Cheremisinoff, N. P. Condensed Encyclopedia of Polymer Engineering Terms (Butterworth–Heinemann, 2001).

  19. 19.

    Wu, D., Chen, F., Li, R. & Shi, Y. Reaction kinetics and simulations for solid-state polymerization of poly(ethylene terephthalate). Macromolecules 30, 6737–6742 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    Krevelen, D. W. V. & Nijenhuis, K. T. in Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions Ch. 7 (Elsevier, 2009).

  21. 21.

    Lide, D. R. Handbook of Chemistry and Physics (CRC Press, 2010).

  22. 22.

    Kuang, J. et al. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res. 47, 2863–2872 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Miao, H. F. et al. Degradation of phenazone in aqueous solution with ozone: influencing factors and degradation pathways. Chemosphere 119, 326–333 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Park, H., Vecitis, C. D. & Hoffmann, M. R. Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113, 7935–7945 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Jimenez-Solomon, M., Song, Q., Jelfs, K., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Antony, A., Fudianto, R. & Cox, S. Assessing the oxidative degradation of polyamide reverse osmosis membrane—accelerated ageing with hypochlorite exposure. J. Membr. Sci. 347, 159–164 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Huang, K. et al. Reactivity of the polyamide membrane monomer with free chlorine: reaction kinetics, mechanisms, and the role of chloride. Environ. Sci. Technol. 53, 8167–8176 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 46, 852–859 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Xu, G. R., Wang, J. N. & Li, C. J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 328, 83–100 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Asadollahi, M., Bastani, D. & Musavi, S. A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination 420, 330–383 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Park, H., Freeman, B. D., Zhang, Z., Sankir, M. & McGrath, J. E. Highly chlorine-tolerant polymers for desalination. Angew. Chem. Int. Ed. 47, 6019–6024 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Law, S. K. A., Minich, T. M. & Levine, R. P. Covalent binding efficiency of the third and fourth complement proteins in relation to pH, nucleophilicity, and availability of hydroxyl groups. Biochemistry 23, 3267–3272 (1984).

    CAS  Article  Google Scholar 

  33. 33.

    FILMTECTM Reverse Osmosis Membranes Technical Manual Form No.45-D01696-en, Rev. 4, 2020; Cleaning procedures for FilmTec™ FT30 Elements (Dow, 2020); https://www.dupont.com/products/filmtecsw302514.html

  34. 34.

    She, Q., Wang, R., Fane, A. G. & Tang, C. Y. Membrane fouling in osmotically driven membrane processes: a review. J. Membr. Sci. 499, 201–233 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21774058), the Natural Science Foundation of Jiangsu Province (BK20180072) and the Fundamental Research Funds for the Central Universities (NUST 30918012201, 30920021119). We also acknowledge the US National Science Foundation through the Engineering Research Center for Nanotechnology-Enabled Water Treatment (EEC1449500) and the American Water Works Association Abel Wolman Fellowship awarded to R.M.D.

Author information

Affiliations

Authors

Contributions

X.Z. conceived the initial idea and experimental design. X.Z. and M.E. supervised the study and experiments. Y.Y. performed the membrane fabrication and characterization experiments. P.Z. and C.J. carried out the molecular dynamics simulations and analysed the data. All authors analysed results and commented on the manuscript. Y.Y., X.Z., R.M.D. and M.E. wrote the paper with help from all authors.

Corresponding authors

Correspondence to Xuan Zhang or Menachem Elimelech.

Ethics declarations

Competing interests

X.Z. and Y.Y. are inventors on patent applications (201911277839.9 and 201911270642.2) submitted by Nanjing University of Science and Technology, which cover the fabrication of polyester RO membranes. All other authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–8 and Notes 1–9.

Source data

Source Data Fig. 2

Desalination performance, micro-scale morphology and DFT simulation results for fabricated polyester membranes.

Source Data Fig. 3

Performance and morphology of PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.

Source Data Fig. 4

Performance recovery of fouled PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, P., Jiang, C. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat Sustain 4, 138–146 (2021). https://doi.org/10.1038/s41893-020-00619-w

Download citation

Further reading

Search

Quick links