Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High performance polyester reverse osmosis desalination membrane with chlorine resistance

Abstract

Chlorination is a common practice to prevent biofouling in municipal water supplies, wastewater reuse and seawater desalination. However, polyamide thin-film composite reverse osmosis membranes—the premier technology for desalination and clean-water production—structurally deteriorate when continually exposed to chlorine species. Here, we use layer-by-layer interfacial polymerization of 3,5-dihydroxybenzoic acid with trimesoyl chloride to fabricate a polyester thin-film composite reverse osmosis membrane that is chlorine-resistant in neutral and acidic conditions. Strong steric hindrance and an electron-withdrawing group effectively prevent direct aromatic chlorination, and residual OH groups capped with isophthaloyl dichloride preclude reaction with active chlorine. The poly(isophthalester) membrane exhibits high salt rejection (99.1 ± 0.2%) and water permeability (2.97 ± 0.13 l m−2 h−1 bar−1), even after demonstrating biofouling prevention with chlorine (50 mg l−1 of NaOCl for 15 min). We anticipate that our chlorine-resistant membrane will greatly advance reverse osmosis desalination as a sustainable technology to meet the global challenge of water supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and fabrication procedure of the polyester RO membrane.
Fig. 2: Desalination performance, micro-scale morphology and DFT simulation results for fabricated polyester membranes.
Fig. 3: Performances and morphologies of PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.
Fig. 4: Performance recovery of fouled PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.

Similar content being viewed by others

Data availability

Data are available upon reasonable request from the authors, according to their contributions. Source data are provided with this paper.

References

  1. Phillip, W. A. & Elimelech, M. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  Google Scholar 

  2. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  3. Stevens, D. M., Shu, J. Y., Reichert, M. & Roy, A. Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind. Eng. Chem. Res. 56, 10526–10551 (2017).

    Article  CAS  Google Scholar 

  4. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018–16025 (2016).

    Article  CAS  Google Scholar 

  5. Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A. & Hilal, N. Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019).

    Article  CAS  Google Scholar 

  6. Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

    Article  CAS  Google Scholar 

  7. Gohil, J. M. & Suresh, A. K. Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies. J. Membr. Sci. 541, 108–126 (2017).

    Article  CAS  Google Scholar 

  8. Verbeke, R., Gómez, V. & Vankelecom, I. F. J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog. Polym. Sci. 72, 1–15 (2017).

    Article  CAS  Google Scholar 

  9. Stolov, M. & Freger, V. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environ. Sci. Technol. 53, 2618–2625 (2019).

    Article  CAS  Google Scholar 

  10. Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environ. Sci. Technol. 46, 13184–13192 (2012).

    Article  CAS  Google Scholar 

  11. Glater, J., Hong, N. & Elimelech, M. The search for a chlorine-resistant reverse osmosis membrane. Desalination 95, 325–345 (1994).

    Article  CAS  Google Scholar 

  12. Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. 3, 112–120 (2016).

    Article  CAS  Google Scholar 

  13. Tanugi, D. C., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    Article  Google Scholar 

  14. Yao, Y. et al. Toward enhancing the chlorine resistance of reverse osmosis membranes: an effective strategy via an end-capping technology. Environ. Sci. Technol. 53, 1296–1304 (2019).

    Article  Google Scholar 

  15. Hu, J., Pu, Y., Ueda, M., Zhang, X. & Wang, L. Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal. J. Membr. Sci. 520, 1–7 (2016).

    Article  CAS  Google Scholar 

  16. Yao, Y. et al. A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies. J. Membr. Sci. 550, 470–479 (2018).

    Article  CAS  Google Scholar 

  17. Zheng, J. et al. Reverse osmosis membrane with enhanced permselectivity for brackish water desalination. J. Membr. Sci. 565, 104–111 (2018).

    Article  CAS  Google Scholar 

  18. Cheremisinoff, N. P. Condensed Encyclopedia of Polymer Engineering Terms (Butterworth–Heinemann, 2001).

  19. Wu, D., Chen, F., Li, R. & Shi, Y. Reaction kinetics and simulations for solid-state polymerization of poly(ethylene terephthalate). Macromolecules 30, 6737–6742 (1997).

    Article  CAS  Google Scholar 

  20. Krevelen, D. W. V. & Nijenhuis, K. T. in Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions Ch. 7 (Elsevier, 2009).

  21. Lide, D. R. Handbook of Chemistry and Physics (CRC Press, 2010).

  22. Kuang, J. et al. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res. 47, 2863–2872 (2013).

    Article  CAS  Google Scholar 

  23. Miao, H. F. et al. Degradation of phenazone in aqueous solution with ozone: influencing factors and degradation pathways. Chemosphere 119, 326–333 (2015).

    Article  CAS  Google Scholar 

  24. Park, H., Vecitis, C. D. & Hoffmann, M. R. Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113, 7935–7945 (2009).

    Article  CAS  Google Scholar 

  25. Jimenez-Solomon, M., Song, Q., Jelfs, K., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).

    Article  CAS  Google Scholar 

  26. Antony, A., Fudianto, R. & Cox, S. Assessing the oxidative degradation of polyamide reverse osmosis membrane—accelerated ageing with hypochlorite exposure. J. Membr. Sci. 347, 159–164 (2010).

    Article  CAS  Google Scholar 

  27. Huang, K. et al. Reactivity of the polyamide membrane monomer with free chlorine: reaction kinetics, mechanisms, and the role of chloride. Environ. Sci. Technol. 53, 8167–8176 (2019).

    Article  CAS  Google Scholar 

  28. Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 46, 852–859 (2012).

    Article  CAS  Google Scholar 

  29. Xu, G. R., Wang, J. N. & Li, C. J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 328, 83–100 (2013).

    Article  CAS  Google Scholar 

  30. Asadollahi, M., Bastani, D. & Musavi, S. A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination 420, 330–383 (2017).

    Article  CAS  Google Scholar 

  31. Park, H., Freeman, B. D., Zhang, Z., Sankir, M. & McGrath, J. E. Highly chlorine-tolerant polymers for desalination. Angew. Chem. Int. Ed. 47, 6019–6024 (2008).

    Article  CAS  Google Scholar 

  32. Law, S. K. A., Minich, T. M. & Levine, R. P. Covalent binding efficiency of the third and fourth complement proteins in relation to pH, nucleophilicity, and availability of hydroxyl groups. Biochemistry 23, 3267–3272 (1984).

    Article  CAS  Google Scholar 

  33. FILMTECTM Reverse Osmosis Membranes Technical Manual Form No.45-D01696-en, Rev. 4, 2020; Cleaning procedures for FilmTec™ FT30 Elements (Dow, 2020); https://www.dupont.com/products/filmtecsw302514.html

  34. She, Q., Wang, R., Fane, A. G. & Tang, C. Y. Membrane fouling in osmotically driven membrane processes: a review. J. Membr. Sci. 499, 201–233 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21774058), the Natural Science Foundation of Jiangsu Province (BK20180072) and the Fundamental Research Funds for the Central Universities (NUST 30918012201, 30920021119). We also acknowledge the US National Science Foundation through the Engineering Research Center for Nanotechnology-Enabled Water Treatment (EEC1449500) and the American Water Works Association Abel Wolman Fellowship awarded to R.M.D.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived the initial idea and experimental design. X.Z. and M.E. supervised the study and experiments. Y.Y. performed the membrane fabrication and characterization experiments. P.Z. and C.J. carried out the molecular dynamics simulations and analysed the data. All authors analysed results and commented on the manuscript. Y.Y., X.Z., R.M.D. and M.E. wrote the paper with help from all authors.

Corresponding authors

Correspondence to Xuan Zhang or Menachem Elimelech.

Ethics declarations

Competing interests

X.Z. and Y.Y. are inventors on patent applications (201911277839.9 and 201911270642.2) submitted by Nanjing University of Science and Technology, which cover the fabrication of polyester RO membranes. All other authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–8 and Notes 1–9.

Source data

Source Data Fig. 2

Desalination performance, micro-scale morphology and DFT simulation results for fabricated polyester membranes.

Source Data Fig. 3

Performance and morphology of PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.

Source Data Fig. 4

Performance recovery of fouled PIP-DHBA-DHBA and SW30 membranes after chlorine exposure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, P., Jiang, C. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat Sustain 4, 138–146 (2021). https://doi.org/10.1038/s41893-020-00619-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00619-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene