Adding forests to the water–energy–food nexus

Abstract

Forest and landscape restoration is a promising strategy for improving water, energy and food securities. We advocate that ‘forest security’ should form a fourth, foundational dimension of a novel water, energy, food and forest security nexus framework. Key principles of this new framework support an integrated role of forests in sustainable development, and engagement of local communities in nature-based solutions, particularly in the Global South. We believe that this new approach can help to accelerate the pace and magnitude of changes needed for achieving the United Nations Sustainable Development Goals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The WEFF nexus.

References

  1. 1.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Google Scholar 

  2. 2.

    At the human-forest interface. Nat. Commun. 9, 1153 (2018).

  3. 3.

    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468 (2013).

    Google Scholar 

  4. 4.

    Arroyo‐Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Google Scholar 

  5. 5.

    Castañeda, A. et al. A new profile of the global poor. World Dev. 101, 250–267 (2018).

    Google Scholar 

  6. 6.

    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS  Google Scholar 

  7. 7.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Google Scholar 

  8. 8.

    Meli, P. et al. Four approaches to guide ecological restoration in Latin America. Restor. Ecol. 25, 156–163 (2017).

    Google Scholar 

  9. 9.

    Robertson, M., Nichols, P., Horwitz, P., Bradby, K. & MacKintosh, D. Environmental narratives and the need for multiple perspectives to restore degraded landscapes in Australia. Ecosyst. Health 6, 119–133 (2000).

    CAS  Google Scholar 

  10. 10.

    Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).

    CAS  Google Scholar 

  11. 11.

    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Google Scholar 

  12. 12.

    Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).

    Google Scholar 

  13. 13.

    Simpson, G. B. & Jewitt, G. P. W. The development of the water-energy-food nexus as a framework for achieving resource security: a review. Front. Environ. Sci. 7, 8 (2019).

    Google Scholar 

  14. 14.

    Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).

    Google Scholar 

  15. 15.

    Hoff, H. Understanding the Nexus: Background Paper for the Bonn2011 Nexus Conference (Stockholm Environment Institute, 2011).

  16. 16.

    Bazilian, M. et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39, 7896–7906 (2011).

    Google Scholar 

  17. 17.

    Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Google Scholar 

  18. 18.

    Ibisch, R. B., Bogardi, J. J. & Borchardt, D. in Integrated Water Resources Management: Concept, Research and Implementation (eds Borchardt, D. et al.) 3–32 (Springer, 2016).

  19. 19.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Google Scholar 

  20. 20.

    Ribot, J. C. & Peluso, N. L. A Theory of Access*. Rural Sociol. 68, 153–181 (2003).

    Google Scholar 

  21. 21.

    Voluntary Guidelines for Agro-Environmental Policies in Latin Amrica and The Caribbean (FAO, 2018).

  22. 22.

    Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).

    Google Scholar 

  23. 23.

    Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).

    CAS  Google Scholar 

  24. 24.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    CAS  Google Scholar 

  25. 25.

    Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).

  26. 26.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    CAS  Google Scholar 

  27. 27.

    Albrecht, T. R., Crootof, A. & Scott, C. A. The water-energy-food nexus: a systematic review of methods for nexus assessment. Environ. Res. Lett. 13, 043002 (2018).

    Google Scholar 

  28. 28.

    Townsend, P. V. et al. Multiple environmental services as an opportunity for watershed restoration. For. Policy Econ. 17, 45–58 (2012).

    Google Scholar 

  29. 29.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Google Scholar 

  30. 30.

    van Noordwijk, M. Integrated natural resource management as pathway to poverty reduction: innovating practices, institutions and policies. Agric. Syst. 172, 60–71 (2019).

    Google Scholar 

  31. 31.

    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    CAS  Google Scholar 

  32. 32.

    Brancalion, P. H. S. et al. A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Nat. Conserv. 14, 1–15 (2016).

    Google Scholar 

  33. 33.

    Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).

    CAS  Google Scholar 

  34. 34.

    Pires, A. P. F., Rezende, C. L., Assad, E. D., Loyola, R. & Scarano, F. R. Forest restoration can increase the Rio Doce watershed resilience. Perspect. Ecol. Conserv. 15, 187–193 (2017).

    Google Scholar 

  35. 35.

    Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).

    Google Scholar 

  36. 36.

    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Google Scholar 

  37. 37.

    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele‐Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  38. 38.

    Sheil, D. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. For. Ecosyst. 5, 19 (2018).

    Google Scholar 

  39. 39.

    Karabulut, A. et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin. Ecosyst. Serv. 17, 278–292 (2016).

    Google Scholar 

  40. 40.

    Richards, R. C. et al. Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst. Serv. 16, 23–32 (2015).

    Google Scholar 

  41. 41.

    Vincent, J. R. et al. Valuing water purification by forests: an analysis of Malaysian panel data. Environ. Resour. Econ. 64, 59–80 (2016).

    Google Scholar 

  42. 42.

    Brancalion, P., Viani, R., Strassburg, B. & Rodrigues, R. Finding the money for tropical forest restoration. Unasylva 239, 41–50 (2012).

    Google Scholar 

  43. 43.

    Zemp, D. C. et al. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14, 13337–13359 (2014).

    CAS  Google Scholar 

  44. 44.

    Energy Access Outlook: From Poverty to Prosperity (International Energy Agency, 2017).

  45. 45.

    Specht, M. J., Pinto, S. R. R., Albuquerque, U. P., Tabarelli, M. & Melo, F. P. L. Burning biodiversity: fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. Glob. Ecol. Conserv. 3, 200–209 (2015).

    Google Scholar 

  46. 46.

    The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development (FAO, 2018).

  47. 47.

    Review of Woodfuel Biomass Production and Utilization in Africa: A Desk Study (United Nations Environment Programme, 2019).

  48. 48.

    Forests and Energy (FAO, 2017); https://go.nature.com/3aI4LYZ

  49. 49.

    Arias, M. E., Cochrane, T. A., Lawrence, K. S., Killeen, T. J. & Farrell, T. A. Paying the forest for electricity: a modelling framework to market forest conservation as payment for ecosystem services benefiting hydropower generation. Environ. Conserv. 38, 473–484 (2011).

    Google Scholar 

  50. 50.

    Moomaw, W. R., Law, B. E. & Goetz, S. J. Focus on the role of forests and soils in meeting climate change mitigation goals: summary. Environ. Res. Lett. 15, 045009 (2020).

    Google Scholar 

  51. 51.

    Tesfaye, M. A. et al. Selection of tree species and soil management for simultaneous fuelwood production and soil rehabilitation in the Ethiopian Central highlands. Land Degrad. Dev. 26, 665–679 (2015).

    Google Scholar 

  52. 52.

    Beddington, J. Food security: contributions from science to a new and greener revolution. Philos. Trans. R. Soc. B 365, 61–71 (2010).

    Google Scholar 

  53. 53.

    van Noordwijk, M. et al. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: reinventing agroforestry? Curr. Opin. Environ. Sustain. 34, 33–42 (2018).

    Google Scholar 

  54. 54.

    Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate Tropical Forest recovery. Restor. Ecol 17, 451–459 (2009).

    Google Scholar 

  55. 55.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Google Scholar 

  56. 56.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).

    Google Scholar 

  57. 57.

    Munang, R. T., Thiaw, I. & Rivington, M. Ecosystem management: tomorrow’s approach to enhancing food security under a changing climate. Sustainability 3, 937–954 (2011).

    Google Scholar 

  58. 58.

    de Souza, S. E. X. F., Vidal, E., Chagas, Gd. F., Elgar, A. T. & Brancalion, P. H. S. Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. Biotropica 48, 868–881 (2016).

    Google Scholar 

  59. 59.

    Cawthorn, D. M. & Hoffman, L. C. The bushmeat and food security nexus: a global account of the contributions, conundrums and ethical collisions. Food Res. Int. 76, 906–925 (2015).

    Google Scholar 

  60. 60.

    Parry, L., Barlow, J. & Peres, C. A. Hunting for sustainability in tropical secondary forests. Conserv. Biol. 23, 1270–1280 (2009).

    Google Scholar 

  61. 61.

    Mbiba, M., Muvengwi, J. & Ndaimani, H. Environmental correlates of livestock depredation by spotted hyaenas and livestock herding practices in a semi-arid communal landscape. Afr. J. Ecol. 56, 984–992 (2018).

    Google Scholar 

  62. 62.

    Calle, A. Partnering with cattle ranchers for forest landscape restoration. Ambio 49, 593–604 (2020).

    Google Scholar 

  63. 63.

    Woolf, D., Solomon, D. & Lehmann, J. Land restoration in food security programmes: synergies with climate change mitigation. Clim. Policy 18, 1260–1270 (2018).

    Google Scholar 

  64. 64.

    Miccolis, A., Peneireiro, F. M., Vieira, D. L. M., Marques, H. R. & Hoffmann, M. R. M. Restoration through agroforestry: options for reconciling livelihoods with onservation in the Cerrado and Caatinga biomes in Brazil. Exp. Agric. 55, 208–225 (2019).

    Google Scholar 

  65. 65.

    Araujo, M. et al. The socio-ecological Nexus+ approach used by the Brazilian Research Network on Global Climate Change. Curr. Opin. Environ. Sustain. 39, 62–70 (2019).

    Google Scholar 

  66. 66.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  67. 67.

    Latawiec, A. E., Strassburg, B. B., Brancalion, P. H., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).

    Google Scholar 

  68. 68.

    Chazdon, R. L. et al. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).

    Google Scholar 

  69. 69.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    Google Scholar 

  70. 70.

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).

    CAS  Google Scholar 

  71. 71.

    Calmon, M. et al. Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor. Ecol. 19, 154–158 (2011).

    Google Scholar 

  72. 72.

    Adams, C., Rodrigues, S. T., Calmon, M. & Kumar, C. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48, 731–744 (2016).

    Google Scholar 

  73. 73.

    Andersson, K. & Agrawal, A. Inequalities, institutions, and forest commons. Glob. Environ. Change 21, 866–875 (2011).

    Google Scholar 

  74. 74.

    Galabuzi, C. et al. Strategies for empowering the local people to participate in forest restoration. Agrofor. Syst. 88, 719–734 (2014).

    Google Scholar 

  75. 75.

    Terrapon-Pfaff, J., Ortiz, W., Dienst, C. & Groene, M.-C. Energising the WEF nexus to enhance sustainable development at local level It. J. Environ. Manag. 223, 409–416 (2018).

    Google Scholar 

  76. 76.

    Van Laerhoven, F. Governing community forests and the challenge of solving two-level collective action dilemmas: a large-N perspective. Glob. Environ. Change 20, 539–546 (2010).

    Google Scholar 

  77. 77.

    Rizvi, A. R. Nature Based Solutions for Human Resilience (IUCN, 2014).

  78. 78.

    Cohen-Shacham, E., Janzen, C., Maginnis, S. & Walters, G. Nature-Based Solutions to Address Global Societal Challenges (IUCN, 2016); https://doi.org/10.2305/IUCN.CH.2016.13.en

  79. 79.

    Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci.Total Environ. 610–611, 997–1009 (2018).

    Google Scholar 

  80. 80.

    Peluso, N. L. & Vandergeest, P. Writing political forests. Antipode 52, 1083–1103 (2020).

    Google Scholar 

  81. 81.

    Chazdon, R. L., Gutierrez, V., Brancalion, P. H. S., Laestadius, L. & Guariguata, M. R. Co-creating conceptual and working frameworks for implementing forest and landscape restoration based on core principles. Forests 11, 706 (2020).

    Google Scholar 

  82. 82.

    Barrow, E. 300,000 hectares restored in Shinyanga, Tanzania — but what did it really take to achieve this restoration? SAPIENS 7, 1–8 (2014).

    Google Scholar 

  83. 83.

    Reij, C. & Garrity, D. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 48, 834–843 (2016).

    Google Scholar 

  84. 84.

    Paudyal, K., Baral, H., Lowell, K. & Keenan, R. J. Ecosystem services from community-based forestry in Nepal: realising local and global benefits. Land Use Policy 63, 342–355 (2017).

    Google Scholar 

  85. 85.

    Viani, R. A. G., Braga, D. P. P., Ribeiro, M. C., Pereira, P. H. & Brancalion, P. H. S. Synergism between payments for water-related ecosystem services, ecological restoration, and Landscape Connectivity Within the Atlantic Forest hotspot. Trop. Conserv. Sci. 11, https://doi.org/10.1177/1940082918790222 (2018).

Download references

Acknowledgements

We thank the research partners and students of our labs that made this possible. We also thank the following funding agencies: CNPq-Brazil (grant no. 441292/2017-8) and Fondecyt (grant no. 11191021).

Author information

Affiliations

Authors

Contributions

F.P.L.M. conceived the original idea and wrote the outline of the Perspective. F.P.L.M., L.P., R.L.C. and P.H.S.B. conceived tables, figures and work on writing and revisions. S.R.R.P., A.P.M., J.F., G.G. and P.M. contributed to content development, writing and revisions.

Corresponding author

Correspondence to Felipe P. L. Melo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melo, F.P.L., Parry, L., Brancalion, P.H.S. et al. Adding forests to the water–energy–food nexus. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-00608-z

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing