Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil

Abstract

Agricultural intensification, and particularly double cropping, has been suggested as a practical strategy to reconcile biofuel feedstock production with other land-use priorities. Here we assess ethanol production under conditions representative of current practice in the west central region of Brazil: maize grown as a second crop with soybean on land that formerly grew a single soybean crop, and energy processed from a combined heat and power plant using plantation-grown eucalyptus chips. For maize ethanol thus produced we find large reductions in greenhouse gas emissions compared to gasoline, and considerable economic and employment benefits at both local and national levels. We also calculate reduced land-use emissions with maize ethanol production compared to the situation without it. Our study thus documents an example of how the complex linkages of bioenergy to food production and security, environment and economic development can be—and indeed appear to be—managed for positive outcomes using current technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sugarcane and corn mills enterprise.
Fig. 2: Life cycle GHG emissions of second crop maize ethanol.
Fig. 3: Environmental performance of ethanol (EtOH) from sugarcane and double-cropped maize ethanol.
Fig. 4: Sensitivity analysis of ethanol life cycle emissions (consequential approach).

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. 1.

    Brown, A. & Le Feuvre, P. Technology Roadmap: Delivering Sustainable Bioenergy (IEA Publications, 2017).

  2. 2.

    Fulton, L. M., Lynd, L. R., Körner, A., Greene, N. & Tonachel, L. R. The need for biofuels as part of a low carbon energy future. Biofuel. Bioprod. Biorefin. 9, 476–483 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Caspeta, L., Buijs, N. A. A. & Nielsen, J. The role of biofuels in the future energy supply. Energy Environ. Sci. 6, 1077–1082 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Moraes, M. A. F. D., de, Bacchi, M. R. P. & Caldarelli, C. E. Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy 91, 116–125 (2016).

    Article  Google Scholar 

  5. 5.

    Lynd, L. R. et al. Bioenergy and African transformation. Biotechnol. Biofuels 8, 18 (2015).

    Article  Google Scholar 

  6. 6.

    Federative Republic of Brazil: Intended Nationally Determination Contribution towards Achieving the Objective of the United Nations Framework Convention on Climate Change (UNFCCC, 2015).

  7. 7.

    Lei no. 13.576, Política Nacional de Biocombustíveis (RenovaBio) e dá outras providências (Brazil, 2017).

  8. 8.

    Grassi, M. C. B. & Pereira, G. A. G. Energy-cane and RenovaBio: Brazilian vectors to boost the development of Biofuels. Ind. Crops Prod. 129, 201–205 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  10. 10.

    Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

    Article  Google Scholar 

  11. 11.

    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat. Sustain. 1, 657–664 (2018).

  12. 12.

    Yan, X., Inderwildi, O. R. & King, D. A. Biofuels and synthetic fuels in the US and China: a review of well-to-wheel energy use and greenhouse gas emissions with the impact of land-use change. Energy Environ. Sci. 3, 190–197 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Woods, J. et al. in Bioenergy & Sustainability: Bridging the Gaps (eds Glaucia, S. et al.) 258–300 (Scientific Committee on Problems of the Environment - SCOPE, 2015).

  14. 14.

    Feyereisen, G. W., Camargo, G. G. T., Baxter, R. E., Baker, J. M. & Richard, T. L. Cellulosic biofuel potential of a winter rye double crop across the US corn-soybean belt. Agron. J. 105, 631–642 (2013).

    Article  Google Scholar 

  15. 15.

    Laborde, D. Assessing the Land Use Change Consequences of European Biofuel Policies (International Food Policy Research Institute, 2011).

  16. 16.

    Taheripour, F., Zhao, X. & Tyner, W. E. The impact of considering land intensification and updated data on biofuels land use change and emissions estimates. Biotechnol. Biofuels 10, 191 (2017).

    Article  Google Scholar 

  17. 17.

    Carriquiry, M., Elobeid, A., Dumortier, J. & Goodrich, R. Incorporating sub-national Brazilian agricultural production and land-use into US biofuel policy evaluation. Appl. Econ. Perspect. Policy https://doi.org/10.1093/aepp/ppy033 (2019).

  18. 18.

    Chaddad, F. The Economics and Organization of Brazilian Agriculture (Academic Press, 2016).

  19. 19.

    Séries Históricas (Companhia Nacional de Abastecimento - CONAB, 2019).

  20. 20.

    Eckert, C. T. et al. Maize ethanol production in Brazil: characteristics and perspectives. Renew. Sustain. Energy Rev. 82, 3907–3912 (2018).

    Article  Google Scholar 

  21. 21.

    Entendendo o Mercado do Milho 1–53 (Instituto Matogrossense de Economia Agropecuária - IMEA, 2015).

  22. 22.

    Oil, Natural Gas and Biofuels Statistical Yearbook 2018 265 (Agência Nacional do Petróleo Gás Natural e Biocombustíveis, 2018).

  23. 23.

    Plano Decenal de Expansão de Energia 2026 (Ministério de Minas e Energia, Empresa de Pesquisa Energética, 2017).

  24. 24.

    Clusters de Etanol de Milho em Mato Grosso (Instituto Matogrossense de Economia Agropecuária - IMEA, 2017).

  25. 25.

    Duffield, J. A., Johansson, R. & Meyer, S. US Ethanol: An Examination of Policy, Production, Use, Distribution, and Market Interactions (US Department of Agriculture, 2015).

  26. 26.

    Milanez, A. Y. et al. A Produção de etanol pela integração do milho-safrinha às usinas de cana-de-açúcar: avaliação ambiental, econômica e sugestões de política. Rev. do BNDES 41, 147–208 (2014).

    Google Scholar 

  27. 27.

    FS Bioenergia Inaugura 1a Indústria Brasileira de Etanol e Coprodutos 100% a Partir do Milho (FS-Bioenergia, 2017).

  28. 28.

    Mano, A. & Samora, R. Brazil launches first corn-only ethanol plant, hope for more. Reuters (11 August 2017).

  29. 29.

    Input-Output Matrix, Tabela Recursos e Usos (Instituto Brasileiro de Geografia e Estatística - IBGE, 2011).

  30. 30.

    Guilhoto, J. J. M., Junior, C. A. G., Visentin, J. C., Imori, D. & Ussami, K. A. Construção da Matriz Inter-Regional de Insumo-Produto para o Brasil: Uma Aplicação do Tupi Working Paper TD NEREUS 03-2017 (Univ. of São Paulo, 2017).

  31. 31.

    Haddad, E. A., Júnior, C. A. G., Nascimento, T. O. & Matriz Interestadual De Insumo-Produto Para, O. Brasil: uma aplicação do método Iioas*. Rev. Bras. Estud. Reg. Urbanos 11, 424–446 (2017).

    Google Scholar 

  32. 32.

    Câmbio Serie Histórica (Instituto de Pesquisa Econômica Aplicada – IPEA, 2019).

  33. 33.

    Boletim Focus – Relatório de Mercado (Banco Central do Brasil, 2018).

  34. 34.

    Alves, B. J. R. et al. Emissões de Óxdo Nitroso de Solos Pelo Uso de Fertilizantes Nitrogenados em Áreas Agrícolas (Embrapa Soja—Comunicado Técnico, 2010).

  35. 35.

    Wang, M., Han, J., Dunn, J. B., Cai, H. & Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 7, 045905 (2012).

    Article  Google Scholar 

  36. 36.

    LCFS Pathway Certified Carbon Intensities (California Air Resources Board, 2017).

  37. 37.

    EPA Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels (US Environmental Protection Agency, 2010).

  38. 38.

    European Commisison. RED. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. J. Eur. Union 140, 16–62 (2009).

  39. 39.

    Gallagher, P. W., Yee, W. C. & Baumes, H. S. Energy Balance for the Corn-Ethanol Industry (US Department of Agriculture, 2015).

  40. 40.

    Chum, H. L., Warner, E., Seabra, J. E. A. & Macedo, I. C. A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels Bioprod. Biorefin. 8, 205–223 (2014)

  41. 41.

    Pereira, L. G. et al. Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat. Renew. Sustain. Energy Rev. 110, 1–12 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Runge, C. F. et al. Assessing the comparative productivity advantage of bioenergy feedstocks at different latitudes. Environ. Res. Lett. 7, 045906 (2012).

    Article  Google Scholar 

  43. 43.

    A Cultura do Milho: Nos Anos-Safra 2007 a 2017: Companhia Nacional de Abastecimento Vol. 12 (CONAB, 2018).

  44. 44.

    Anuário da Agricultura Brasileira—Agrianual (FNP, 2006).

  45. 45.

    Couto, L., Nicholas, I. & Wright L. Short Rotation Eucalypt Plantations for Energy in Brazil IEA Bioenergy Task 43 (IEA, 2011).

  46. 46.

    Cavalett, O., Slettmo, S. N. & Cherubini, F. Energy and environmental aspects of using eucalyptus from Brazil for energy and transportation services in Europe.Sustainability 10, 4068 (2018).

    CAS  Article  Google Scholar 

  47. 47.

    Cabral, O. M. R. et al. The energy and water balance of a eucalyptus plantation in southeast Brazil. J. Hydrol. 388, 208–216 (2010).

    Article  Google Scholar 

  48. 48.

    Donke, A., Nogueira, A., Matai, P. & Kulay, L. Environmental and energy performance of ethanol production from the integration of sugarcane, corn, and grain sorghum in a multipurpose plant. Resources 6, 1 (2017).

    Article  Google Scholar 

  49. 49.

    Souza, G. M., Victoria, R. L., Joly, C. A. & Verdade, L. M. Bioenergy & Sustainability: Bridging the Gaps (SCOPE, 2015).

  50. 50.

    Dale, V. H., Kline, K. L., Richard, T. L., Karlen, D. L. & Belden, W. W. Bridging biofuel sustainability indicators and ecosystem services through stakeholder engagement. Biomass Bioenergy 114, 143–156 (2018).

    Article  Google Scholar 

  51. 51.

    Bothast, R. J. & Schlicher, M. A. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67, 19–25 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    Manochio, C., Andrade, B. R., Rodriguez, R. P. & Moraes, B. S. Ethanol from biomass: a comparative overview. Renew. Sustain. Energy Rev. 80, 743–755 (2017).

    Article  Google Scholar 

  53. 53.

    Bonomi, A., Cavalett, O. & Pereira da Cunha, M. A. P. L. Virtual Biorefinery: An Optimization Strategy for Renewable Carbon Valorization (Springer, 2016).

  54. 54.

    Arantes, S. M. Avaliação dos Impactos Socioeconômicos da Intensificação e da Integração da Produção Pecuária ao Setor Sucroenergético no Estado de São Paulo (Unicamp, 2018).

  55. 55.

    Miller, R. E. & Blair, P. D. Input–Output Analysis: Foundations and Extensions (Cambridge Univ. Press, 2009).

  56. 56.

    ISO 14040. Environmental Management—Life Cycle Assessment—Principles and Framework 2nd edn (ISO, 2006).

  57. 57.

    ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO, 2006).

  58. 58.

    Hoffman, L. A. & Baker, A. Estimating the Substitution of Distillers’ Grains for Corn and Soybean Meal in the US Feed Complex (US Department of Agriculture, 2011).

  59. 59.

    IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry and Other Land Use (IPCC, 2006).

  60. 60.

    Banco Nacional de Inventários do Ciclo de Vida (SICV, 2019).

  61. 61.

    GREET Model (Argonne National Laboratory, 2016).

  62. 62.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  63. 63.

    Harris, N., Grimland, S. & Brown, S. Land Use Change and Emission Factors: Updates since Proposed RFS Rule (EPA, 2009).

  64. 64.

    Mercedes Bustamante, M. et al. Terceiro Inventário Brasileiro de Emissões E Remoções Antrópicas de Gases de Efeito Estufa- Emissões no Setor uso da Terra, Mudança do uso da Terra e Florestas (MCTIC, 2015).

  65. 65.

    Harfuch, L., Bachion, L. C., Moreira, M. M. R., Nassar, A. M. & Carriquiry, M. in Handbook of Bioenergy Economics and Policy Vol. 2 (eds Khanna, M., Scheffran, J. & Zilberman, D.) 273–302 (Springer, 2017).

  66. 66.

    Moreira, M. M. R. Estratégias para Expansão do Setor Sucroenergético e suas Contribuições para a NDC Brasileira (Unicamp, 2016).

  67. 67.

    Shurson, J. Analysis of Current Feeding Practices of Distiller’s Grains with Solubles in Livestock and Poultry Feed Relative to Land Use Credits Associated with Determining the Low Carbon Fuel Standard for Ethanol (Univ. Minnesota, 2009).

  68. 68.

    Mumm, R. H., Goldsmith, P. D., Rausch, K. D. & Stein, H. H. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization. Biotechnol. Biofuels 7, 61 (2014).

    Article  Google Scholar 

  69. 69.

    Chum, H. L. et al. Understanding the evolution of environmental and energy performance of the US corn ethanol industry: evaluation of selected metrics. Biofuels Bioprod. Biorefin. 8, 224–240 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research for this paper was part of the Land Use Initiative (INPUT), a project supported by the Children’s Investment Fund Foundation. L.R.L. was supported by a grant from the Center for Bioenergy Innovation, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. CAPES and CNPq are thankfully acknowledged for their financial support.

Author information

Affiliations

Authors

Contributions

J.E.A.S. performed life cycle assessment modelling. S.M.A. performed land-use modelling. M.P.C. performed the socioeconomic analysis. L.R.L. provided a critical review of the manuscript and background on maize ethanol production in the United States. J.J.M.G. provided the interregional matrix for the socioeconomic analysis. M.M.R.M. coordinated the study. All authors analysed the results and wrote the paper.

Corresponding author

Correspondence to Marcelo M. R. Moreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1–14 and refs. 113.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreira, M.M.R., Seabra, J.E.A., Lynd, L.R. et al. Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat Sustain 3, 209–216 (2020). https://doi.org/10.1038/s41893-019-0456-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing