Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles for knowledge co-production in sustainability research


Research practice, funding agencies and global science organizations suggest that research aimed at addressing sustainability challenges is most effective when ‘co-produced’ by academics and non-academics. Co-production promises to address the complex nature of contemporary sustainability challenges better than more traditional scientific approaches. But definitions of knowledge co-production are diverse and often contradictory. We propose a set of four general principles that underlie high-quality knowledge co-production for sustainability research. Using these principles, we offer practical guidance on how to engage in meaningful co-productive practices, and how to evaluate their quality and success.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Principles for knowledge co-production in sustainability research.


  1. 1.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  Google Scholar 

  2. 2.

    Raudsepp-Hearne, C. et al. Untangling the environmentalist’s paradox: why is human well-being increasing as ecosystem services degrade? BioScience 60, 576–589 (2010).

    Article  Google Scholar 

  3. 3.

    Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).

    Article  Google Scholar 

  4. 4.

    Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  CAS  Google Scholar 

  5. 5.

    Cash, D. W. et al. Scale and cross-scale dynamics: governance and information in a multilevel world. Ecol. Soc. 11, 8 (2006).

    Article  Google Scholar 

  6. 6.

    The best research is produced when researchers and communities work together. Nature 562, 7 (2018).

  7. 7.

    Weaver, C. P. et al. From global change science to action with social sciences. Nat. Clim. Change 4, 656–659 (2014).

    Article  Google Scholar 

  8. 8.

    Balvanera, P. et al. Key features for more successful place-based sustainability research on social-ecological systems: a Programme on Ecosystem Change and Society (PECS) perspective. Ecol. Soc. 22, 14 (2017).

    Article  Google Scholar 

  9. 9.

    Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).

    Article  Google Scholar 

  10. 10.

    van der Hel, S. New science for global sustainability? The institutionalisation of knowledge co-production in Future Earth. Environ. Sci. Policy 61, 165–175 (2016).

    Article  Google Scholar 

  11. 11.

    Bremer, S. & Meisch, S. Co-production in climate change research: reviewing different perspectives. Wiley Interdiscip. Rev. Clim. Change 8, e482 (2017).

    Article  Google Scholar 

  12. 12.

    Lang, D. J. et al. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain. Sci. 7, 25–43 (2012).

    Article  Google Scholar 

  13. 13.

    Pohl, C. & Hadorn, G. H. Frameworks for transdisciplinary research: framework #1. GAIA - Ecol. Perspect. Sci. Soc. 26, 232–232 (2017).

    Google Scholar 

  14. 14.

    Ferguson, D. B., Masayesva, A., Meadow, A. M. & Crimmins, M. A. Rain gauges to range conditions: collaborative development of a drought information system to support local decision-making. Weather Clim. Soc. 8, 345–359 (2016).

    Article  Google Scholar 

  15. 15.

    Haraway, D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Fem. Stud. 14, 575–589 (1988).

    Article  Google Scholar 

  16. 16.

    Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).

    Article  Google Scholar 

  17. 17.

    Nielsen, W. et al. Gender diversity leads to better science. Proc. Natl Acad. Sci. USA 114, 1740–1742 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Greenwood, D. & Levin, M. Introduction to Action Research. Introduction to Action Reasearch (SAGE Publications, 2007).

  19. 19.

    Pohl, C. et al. Researchers’ roles in knowledge co-production: experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal. Sci. Public Policy 37, 267–281 (2010).

    Article  Google Scholar 

  20. 20.

    Harvey, B., Cochrane, L. & Van Epp, M. Charting knowledge co‐production pathways in climate and development. Environ. Policy Gov. 29, 107–117 (2019).

    Article  Google Scholar 

  21. 21.

    Hurlbert, M. & Gupta, J. The split ladder of participation: a diagnostic, strategic, and evaluation tool to assess when participation is necessary. Environ. Sci. Policy 50, 100–113 (2015).

    Article  Google Scholar 

  22. 22.

    Nel, J. L. et al. Knowledge co-production and boundary work to promote implementation of conservation plans. Conserv. Biol. 30, 176–188 (2016).

    Article  Google Scholar 

  23. 23.

    Reed, M. S. et al. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 90, 1933–1949 (2009).

    Article  Google Scholar 

  24. 24.

    Bodin, Ö., Crona, B. & Ernstson, H. Social networks in natural resource management: what is there to learn from a structural perspective? Ecol. Soc. 11, r2 (2006).

    Article  Google Scholar 

  25. 25.

    Brandt, F., Josefsson, J. & Spierenburg, M. Power and politics in stakeholder engagement: farm dweller (in)visibility and conversions to game farming in South Africa. Ecol. Soc. 23, 32 (2018).

    Article  Google Scholar 

  26. 26.

    Mobjörk, M. Consulting versus participatory transdisciplinarity: a refined classification of transdisciplinary research. Futures 42, 866–873 (2010).

    Article  Google Scholar 

  27. 27.

    Wittmayer, J. M. & Schäpke, N. Action, research and participation: roles of researchers in sustainability transitions. Sustain. Sci. 9, 483–496 (2014).

    Article  Google Scholar 

  28. 28.

    Reed, M. S., Stringer, L. C., Fazey, I., Evely, A. C. & Kruijsen, J. H. J. Five principles for the practice of knowledge exchange in environmental management. J. Environ. Manag. 146, 337–345 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Gaventa, J. Finding the spaces for change: a power analysis. IDS Bull. 37, 23–33 (2006).

    Article  Google Scholar 

  30. 30.

    Popa, F., Guillermin, M. & Dedeurwaerdere, T. A pragmatist approach to transdisciplinarity in sustainability research: from complex systems theory to reflexive science. Futures 65, 45–56 (2015).

    Article  Google Scholar 

  31. 31.

    Polk, M. Transdisciplinary co-production: designing and testing a transdisciplinary research framework for societal problem solving. Futures 65, 110–122 (2015).

    Article  Google Scholar 

  32. 32.

    Bednarek, A. T. et al. Boundary spanning at the science–policy interface: the practitioners’ perspectives. Sustain. Sci. 13, 1175–1183 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Cvitanovic, C., Löf, M. F., Norström, A. V. & Reed, M. S. Building university-based boundary organisations that facilitate impacts on environmental policy and practice. PLOS ONE 13, e0203752 (2018).

    Article  CAS  Google Scholar 

  34. 34.

    Hahn, T., Olsson, P., Folke, C. & Johansson, K. Trust-building, knowledge generation and organizational innovations: the role of a bridging organization for adaptive comanagement of a wetland landscape around Kristianstad, Sweden. Hum. Ecol. 34, 573–592 (2006).

    Article  Google Scholar 

  35. 35.

    Miller, T. R. et al. The future of sustainability science: a solutions-oriented research agenda. Sustain. Sci. 9, 239–246 (2014).

    Article  Google Scholar 

  36. 36.

    Wiek, A. Challenges of transdisciplinary research as interactive knowledge generation – experiences from transdisciplinary case study research. GAIA - Ecol. Perspect. Sci. Soc. 16, 52–57 (2007).

    Google Scholar 

  37. 37.

    Leach, M. et al. Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in. Africa. Philos. Trans. Royal Soc. B 372, 20160163 (2017).

    Article  Google Scholar 

  38. 38.

    Earl, S., Carden, F. & Smutylo, T. Outcome Mapping: Building Learning and Reflection into Development Programs (IDRC, 2001).

  39. 39.

    Moser, S. C. Can science on transformation transform science? Lessons from co-design. Curr. Opin. Environ. Sustain. 20, 106–115 (2016).

    Article  Google Scholar 

  40. 40.

    Wiesmann, U. et al. in Handbook of Transdisciplinary Research (eds Hadorn, G. H. et al.) 433–441 (Springer, 2008).

  41. 41.

    Leach, M., Stirling, A. C. & Scoones, I. C. Dynamic Sustainabilities (Routledge, 2010).

  42. 42.

    Carpenter, S. R., Folke, C., Scheffer, M. & Westley, F. Resilience: accounting for the noncomputable. Ecol. Soc. 14, 13 (2009).

    Article  Google Scholar 

  43. 43.

    Archibald, T., Sharrock, G., Buckley, J. & Cook, N. Assumptions, conjectures, and other miracles: the application of evaluative thinking to theory of change models in community development. Eval. Program Plan. 59, 119–127 (2016).

    Article  Google Scholar 

  44. 44.

    Reid, R. S. et al. Evolution of models to support community and policy action with science: balancing pastoral livelihoods and wildlife conservation in savannas of East Africa. Proc. Natl Acad. Sci. USA 113, 4579–4584 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Dilling, L. & Lemos, M. C. Creating usable science: opportunities and constraints for climate knowledge use and their implications for science policy. Glob. Environ. Change 21, 680–689 (2011).

    Article  Google Scholar 

  46. 46.

    Sarkki, S. et al. Adding ‘iterativity’ to the credibility, relevance, legitimacy: a novel scheme to highlight dynamic aspects of science-policy interfaces. Environ. Sci. Policy 54, 505–512 (2015).

    Article  Google Scholar 

  47. 47.

    Steyaert, P. & Jiggins, J. Governance of complex environmental situations through social learning: a synthesis of SLIM’s lessons for research, policy and practice. Environ. Sci. Policy 10, 575–586 (2007).

    Article  Google Scholar 

  48. 48.

    Wall, T. U., Meadow, A. M. & Horganic, A. Developing evaluation indicators to improve the process of coproducing usable climate science. Weather Clim. Soc. 9, 95–107 (2017).

    Article  Google Scholar 

  49. 49.

    Meagher, L. R. & Martin, U. Slightly dirty maths: the richly textured mechanisms of impact. Res. Eval. 26, 15–27 (2017).

    Google Scholar 

  50. 50.

    Walter, A. I., Helgenberger, S., Wiek, A. & Scholz, R. W. Measuring societal effects of transdisciplinary research projects: design and application of an evaluation method. Eval. Program Plan. 30, 325–338 (2007).

    Article  Google Scholar 

  51. 51.

    Klein, J. T. Evaluation of interdisciplinary and transdisciplinary research. Am. J. Prev. Med. 35, S116–S123 (2008).

    Article  Google Scholar 

  52. 52.

    Wickson, F. & Carew, A. L. Quality criteria and indicators for responsible research and innovation: learning from transdisciplinarity. J. Responsible Innov. 1, 254–273 (2014).

    Article  Google Scholar 

  53. 53.

    Belcher, B. M., Rasmussen, K. E., Kemshaw, M. R. & Zornes, D. A. Defining and assessing research quality in a transdisciplinary context. Res. Eval. 25, 1–17 (2016).

    Article  Google Scholar 

  54. 54.

    Hansson, S. & Polk, M. Assessing the impact of transdisciplinary research: the usefulness of relevance, credibility, and legitimacy for understanding the link between process and impact. Res. Eval. 27, 132–144 (2018).

    Article  Google Scholar 

  55. 55.

    Posner, S. M., McKenzie, E. & Ricketts, T. H. Policy impacts of ecosystem services knowledge. Proc. Natl Acad. Sci. USA 113, 1760–1765 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Lebel, J. & McLean, R. A better measure of research from the global south. Nature 559, 23–26 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Phillipson, J., Lowe, P., Proctor, A. & Ruto, E. Stakeholder engagement and knowledge exchange in environmental research. J. Environ. Manag. 95, 56–65 (2012).

    Article  Google Scholar 

  58. 58.

    Wiek, A., Talwar, S., O’Shea, M. & Robinson, J. Toward a methodological scheme for capturing societal effects of participatory sustainability research. Res. Eval. 23, 117–132 (2014).

    Article  Google Scholar 

  59. 59.

    Pitt, R. et al. Wrestling with the complexity of evaluation for organizations at the boundary of science, policy, and practice. Conserv. Biol. 32, 998–1006 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Greenhalgh, T., Raftery, J., Hanney, S. & Glover, M. Research impact: a narrative review. BMC Med. 14, 78 (2016).

    Article  Google Scholar 

  61. 61.

    Wolf, B., Lindenthal, T., Szerencsits, M., Holbrook, J. B. & Heβ, J. Evaluating research beyond scientific impact: how to include criteria for productive interactions and impact on practice and society. Gaia 22, 104–114 (2013).

    Article  Google Scholar 

  62. 62.

    Barreteau, O., Bots, P. W. G. & Daniell, K. A. A framework for clarifying ‘participation’ in participatory research to prevent its rejection for the wrong reasons. Ecol. Soc. 15, 1 (2010).

    Article  Google Scholar 

  63. 63.

    Tobias, S., Ströbele, M. F. & Buser, T. How transdisciplinary projects influence participants’ ways of thinking: a case study on future landscape development. Sustain. Sci. 14, 405–419 (2019).

    Article  Google Scholar 

  64. 64.

    Jahn, T. & Keil, F. An actor-specific guideline for quality assurance in transdisciplinary research. Futures 65, 195–208 (2015).

    Article  Google Scholar 

  65. 65.

    Brisolara, S. The history of participatory evaluation and current debates in the field. New Dir. Eval. 1998, 25–41 (1998).

    Article  Google Scholar 

  66. 66.

    Gray, S., Chan, A., Clark, D. & Jordan, R. Modeling the integration of stakeholder knowledge in social–ecological decision-making: benefits and limitations to knowledge diversity. Ecol. Modell. 229, 88–96 (2012).

    Article  Google Scholar 

  67. 67.

    Yamineva, Y. Lessons from the Intergovernmental Panel on Climate Change on inclusiveness across geographies and stakeholders. Environ. Sci. Policy 77, 244–251 (2017).

    Article  Google Scholar 

  68. 68.

    Woolrych, R. & Sixsmith, J. Placing well-being and participation within processes of urban regeneration. Int. J. Public Sect. Manag. 26, 216–231 (2013).

    Article  Google Scholar 

  69. 69.

    Schulz, A. J., Israel, B. A. & Lantz, P. Instrument for evaluating dimensions of group dynamics within community-based participatory research partnerships. Eval. Program Plan. 26, 249–262 (2003).

    Article  Google Scholar 

  70. 70.

    Bednarek, A. T., Shouse, B., Hudson, C. G. & Goldburg, R. Science-policy intermediaries from a practitioner’s perspective: the Lenfest Ocean Program experience. Sci. Public Policy 43, 291–300 (2016).

    Article  Google Scholar 

  71. 71.

    Wyborn, C. et al. Understanding the impacts of research synthesis. Environ. Sci. Policy 86, 72–84 (2018).

    Article  Google Scholar 

  72. 72.

    Chowdhury, G., Koya, K. & Philipson, P. Measuring the impact of research: lessons from the UK’s research excellence framework 2014. PLOS ONE 11, e0156978 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    Mayne, J. Contribution analysis: coming of age? Evaluation 18, 270–280 (2012).

    Article  Google Scholar 

  74. 74.

    Patton, M. Q. Developmental Evaluation: Applying Complexity Concepts to Enhance Innovation and Use (Guilford Press, 2011).

  75. 75.

    Alcamo, J. Evaluating the impacts of global environmental assessments. Environ. Sci. Policy 77, 268–272 (2017).

    Article  Google Scholar 

  76. 76.

    Olsen, S. B., Page, G. G. & Ochoa, E. The Analysis of Governance Responses to Ecosystem Change: A Handbook for Assembling a Baseline LOICZ Reports and Studies No. 34 (LOICZ, 2009).

  77. 77.

    Österblom, H., Jouffray, J.-B., Folke, C. & Rockström, J. Emergence of a global science–business initiative for ocean stewardship. Proc. Natl Acad. Sci. USA 114, 9038–9043 (2017).

    Article  CAS  Google Scholar 

  78. 78.

    Westley, F. et al. Tipping toward sustainability: emerging pathways of transformation. Ambio 40, 762–780 (2011).

    Article  Google Scholar 

  79. 79.

    Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31, 1257–1274 (2002).

    Article  Google Scholar 

  80. 80.

    Moore, M. et al. Studying the complexity of change: toward an analytical framework for understanding deliberate social-ecological transformations. Ecol. Soc. 19, 54 (2014).

    Article  Google Scholar 

  81. 81.

    Abson, D. J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017).

    Article  Google Scholar 

  82. 82.

    Galaz, V., Leach, M. & Scoones, I. in One Health: Science, Politics and Zoonotic Disease in Africa (ed. Bardosh, K.) 21–37 (Routledge, 2016).

  83. 83.

    van der Hel, S. Science for change: a survey on the normative and political dimensions of global sustainability research. Glob. Environ. Change 52, 248–258 (2018).

    Article  Google Scholar 

  84. 84.

    Gibbons, M. et al. The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies (Sage, 1994).

  85. 85.

    Funtowicz, S. O. & Ravetz, J. R. in Perspectives on Ecological Integrity (eds Westra, L. & Lemons, J.) 146–161 (Springer, 1995).

  86. 86.

    Lubchenco, J. Entering the century of the environment: a new social contract for science. Science 279, 491–497 (1998).

    CAS  Article  Google Scholar 

  87. 87.

    Leemans, R. The lessons learned from shifting from global-change research programmes to transdisciplinary sustainability science. Curr. Opin. Environ. Sustain. 19, 103–110 (2016).

    Article  Google Scholar 

  88. 88.

    Lewin, K. Action research and minority problems. J. Soc. Issues 2, 34–46 (1946).

    Article  Google Scholar 

  89. 89.

    Checkland, P. Soft systems methodology: a thirty year retrospective. Syst. Res. Behav. Sci. 17, 11–58 (2000).

    Article  Google Scholar 

  90. 90.

    Holling, C. Adaptive Environmental Assessment and Management (John Wiley & Sons, 1978).

  91. 91.

    Brown, L. & Tandon, R. Ideology and political economy in inquiry: action research and participatory research. J. Appl. Behav. Sci. 19, 277–294 (1983).

    Article  Google Scholar 

  92. 92.

    Ostrom, E. Crossing the great divide: Coproduction, synergy, and development. World Dev. 24, 1073–1087 (1996).

    Article  Google Scholar 

  93. 93.

    Watson, V. Co-production and collaboration in planning – the difference. Plan. Theory Pract. 15, 62–76 (2014).

    Article  Google Scholar 

  94. 94.

    Clark, W. C. & Dickson, N. M. Sustainability science: the emerging research program. Proc. Natl Acad. Sci. USA 100, 8059–8061 (2003).

    CAS  Article  Google Scholar 

  95. 95.

    Lemos, M. C. & Morehouse, B. J. The co-production of science and policy in integrated climate assessments. Glob. Environ. Change 15, 57–68 (2005).

    Article  Google Scholar 

  96. 96.

    Jasanoff, S. in States of Knowledge: The Co-Production of Science and Social Order (ed. Jasanoff, S.) 1–12 (Routledge, 2004).

  97. 97.

    Miller, C. A. & Wyborn, C. Co-production in global sustainability: histories and theories. Environ. Sci. Policy (2018).

  98. 98.

    van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).

    Article  Google Scholar 

  99. 99.

    Busilacchi, S., Butler, J., Van Putten, I., Maru, Y. & Posu, J. Asymmetrical development across transboundary regions: the case of the Torres Strait Treaty Region (Australia and Papua New Guinea). Sustainability 10, 4200 (2018).

    Article  Google Scholar 

  100. 100.

    Mitchell, M. G. E. et al. The Montérégie Connection: linking landscapes, biodiversity, and ecosystem services to improve decision making. Ecol. Soc. 20, 15 (2015).

    Article  Google Scholar 

Download references


A.V.N. received support by the Swedish Research Council Formas (grant number 2017-01326) and the GRAID programme at SRC. M.F.L. received support by the foundation BalticSea2020 and the Stockholm University Baltic Sea Centre. S.W. received support by the Swedish Research Council Formas (mobility starting grant 2017-01631). H.Ö. received support from the Walton Family Foundation (grants 2017-693 and 2018-1371), The David and Lucile Packard Foundation (grants 2017-66205 and 2019-68336), and the Gordon and Betty Moore Foundation (grants GBMF5668.01 and GBMF5668.02). R.B. received support from the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and National Research Foundation of South Africa (grant 98766); the GRAID programme at SRC; and the Swedish Research Council (grant 621-2014-5137). M.-F.L. received support by the Swiss Academy of Sciences (SCNAT) and the Chinese Academy of Sciences (CAS). B.M.C. received support from the CGIAR Trust Fund and through bilateral funding agreements. This research contributes to the Program on Ecosystem Change and Society (

Author information




The design, development and writing of the manuscript were co-led by authors A.V.N., C.C., M.F.L., C.W. and S.W. The work was coordinated by A.V.N. All authors wrote and commented on the manuscript.

Corresponding author

Correspondence to Albert V. Norström.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norström, A.V., Cvitanovic, C., Löf, M.F. et al. Principles for knowledge co-production in sustainability research. Nat Sustain 3, 182–190 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing