Addressing environmental sustainability of biochemicals


Producing biochemicals from renewable resources is a key driver for moving towards sustainable societies. Life cycle assessment (LCA) is a standardized tool to measure related progress by quantifying environmental sustainability performance of chemical products along their life cycles. We analysed LCA studies applied to commercialized commodity biochemicals produced through microbial fermentation. The few available studies show inconsistencies in coverage of environmental impacts and life cycle stages, with varying conclusions. Claims of better sustainability performance of biochemicals over fossil-based chemicals are often based on comparing global warming impacts, while ignoring other impacts from bio-feedstock production. To boost sustainable biochemicals, we recommend that LCA practitioners include the broader range of impact indicators and entire life cycles, follow standards and guidance, and address missing data. The biochemical industry should systematically use LCA to direct research, identify impact hotspots, and develop methods to estimate full-scale process performance. This will promote biotechnology as important contributor to solving existing sustainability challenges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of seven existing LCA studies of succinic acid production with their respective life cycle stages and impact categories considered.
Fig. 2: Environmental impact comparison for chemicals with available data from published studies.


  1. 1.

    Aranoff, S. L. et al. Industrial Biotechnology: Development and Adoption by the U.S. Chemical and Biofuel Industries (United States International Trade Commission, 2008).

  2. 2.

    IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  3. 3.

    International Energy Outlook (United States Energy Information Administration, 2016).

  4. 4.

    Khoo, H. H., Ee, W. L. & Isoni, V. Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green Chem. 18, 1912–1922 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Papong, S. et al. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 65, 539–550 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Leejarkpai, T., Mungcharoen, T. & Suwanmanee, U. Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J. Clean. Prod. 125, 95–107 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Biddy, M. J., Scarlata, C. & Kinchin, C. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential (National Renewable Energy Laboratory, 2016).

  8. 8.

    Hottle, T. A., Bilec, M. M. & Landis, A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stabil. 98, 1898–1907 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Werpy, T. et al. Top Value Added Chemicals From Biomass Volume 1—Results of Screening for Potential Candidates From Sugars and Synthesis Gas (US Department of Energy, 2004).

  10. 10.

    Biomass Research and Development Act of 2000 (US Department of Energy, 2000).

  11. 11.

    Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Choi, S., Song, C. W., Shin, J. H. & Lee, S. Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28, 223–239 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Opportunities for the Fermentation-Based Chemical Industry (Deloitte, 2014).

  14. 14.

    ISO 14040 International Standard. Environmental Management - Life Cycle Assessment - Principles and Framework (International Organization for Standardization, 2006).

  15. 15.

    Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Shonnard, D. R. et al. A review of environmental life cycle assessments of liquid transportation biofuels in the Pan American region. Environ. Manag. 56, 1356–1376 (2015).

    Article  Google Scholar 

  17. 17.

    Cherubini, F. & Strømman, A. H. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour. Technol. 102, 437–451 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Malça, J. & Freire, F. Life-cycle studies of biodiesel in Europe: a review addressing the variability of results and modeling issues. Renew. Sustain. Energy Rev. 15, 338–351 (2011).

    Article  CAS  Google Scholar 

  19. 19.

    Amiri, T. Y. & Ghasemzadeh, K. in Ethanol. Science and Engineering (eds Basile, A. et al.) 451–504 (Elsevier, 2019).

  20. 20.

    Lari, G. M. et al. Environmental and economical perspectives of a glycerol biorefinery. Energy Environ. Sci. 11, 1012–1029 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    National Center for Biotechnology Information PubCHem (Bethesda, 2018).

  22. 22.

    ISO 14044 International Standard. Environmental Management - Life Cycle Assessment - Requirements and Guidelines (International Organization for Standardization, 2006).

  23. 23.

    Daful, A. G., Haigh, K., Vaskan, P. & Görgens, J. F. Environmental impact assessment of lignocellulosic lactic acid production: integrated with existing sugar mills. Food Bioprod. Process. 99, 58–70 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Patel, M. et al. Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources - The Potential of White Biotechnology (Utrecht University, Department of Science, Technology and Society / Copernicus Institute, 2006).

  25. 25.

    Hermann, B. G., Blok, K. & Patel, M. K. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ. Sci. Technol. 41, 7915–7921 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Suwanmanee, U. et al. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int. J. Life Cycle Assess. 18, 401–417 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Isola, C. et al. Life cycle assessment of photodegradable polymeric material derived from renewable bioresources. J. Clean. Prod. 142, 2935–2944 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Madival, S., Auras, R., Singh, S. P. & Narayan, R. Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J. Clean. Prod. 17, 1183–1194 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Cok, B., Tsiropoulos, I., Roes, A. L. & Patel, M. K. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioprod. Bioref. 8, 16–29 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Smidt, M. et al. in Sustainability Assessment of Renewables-Based Products (eds Dewulf, J., De Meester, S. & Alvarenga, R. A. F.) 307–321 (John Wiley & Sons, 2016).

  31. 31.

    Groot, W. J. & Borén, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int. J. Life Cycle Assess. 15, 970–984 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Morales, M. et al. Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis. Energy Environ. Sci. 8, 558–567 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Pinazo, J. M., Domine, M. E., Parvulescu, V. & Petru, F. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal. Today 239, 17–24 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Morales, M. et al. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environ. Sci. 9, 2794–2805 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Breedveld, L. et al. LCA of vegetarian burger packed in biobased polybutylene succinate. In Proc. 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014) (eds Schenck, R. & Huizen, D.) 157–166 (American Center for Life Cycle Assessment, 2014).

  36. 36.

    Patel, M. K. et al. Second-generation bio-based plastics are becoming a reality - non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels Bioprod. Bioref. 12, 426–441 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Forte, A., Zucaro, A., Basosi, R. & Fierro, A. LCA of 1,4-butanediol produced via direct fermentation of sugars from wheat straw feedstock within a territorial biorefinery. Materials 9, 563 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Laurent, A. et al. Review of LCA studies of solid waste management systems - part I: lessons learned and perspectives. Waste Manag. 34, 573–588 (2014).

    Article  Google Scholar 

  39. 39.

    Vink, E. T. H. & Davies, S. Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind. Biotechnol. 11, 167–180 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Thomassen, G., Van Dael, M., Lemmens, B. & Van Passel, S. A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework. Renew. Sustain. Energ. Rev. 68, 876–887 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Life Cycle Assessment: Principles and Practice (US Environmental Protection Agency, 2006).

  42. 42.

    EN 16760:2015: Bio-based Products - Life Cycle Assessment (European Committee for Standardisation, 2015).

  43. 43.

    Hauschild, M. Z. Assessing environmental impacts in a life-cycle perspective. Environ. Sci. Technol. 39, 81A–88A (2005).

    CAS  Article  Google Scholar 

  44. 44.

    Hauschild, M., Rosenbaum, R. & Olsen, S. I. Life Cycle Assessment: Theory and Practice (Springer, 2018).

  45. 45.

    ecoinvent Version 3.5 (ecoinvent, 2018).

  46. 46.

    Ögmundarson, Ó., Sukumara, S., Laurent, A. & Fantke, P. Environmental hotspots of lactic acid production systems. Glob. Change Biol. Bioenerg. 12, 19–38 (2020).

    Article  CAS  Google Scholar 

  47. 47.

    Wannaz, C., Fantke, P. & Jolliet, O. Multi-scale spatial modeling of human exposure from local sources to global intake. Environ. Sci. Technol. 52, 701–711 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Mutel, C. et al. Overview and recommendations for regionalized life cycle impact assessment. Int. J. Life Cycle Assess. 24, 856–865 (2019).

    CAS  Article  Google Scholar 

  49. 49.

    Kirchain, R. E. Jr, Gregory, J. R. & Olivetti, E. A. Environmental life-cycle assessment. Nat. Mater. 16, 693–697 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Schmidt, J. H., Weidema, B. P. & Brandão, M. A framework for modelling indirect land use changes in Life Cycle Assessment. J. Clean. Prod. 99, 230–238 (2015).

    Article  Google Scholar 

  51. 51.

    Bakshi, B. R. The path to a sustainable chemical industry: progress and problems. Curr. Opin. Chem. Eng. 1, 64–68 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Dunn, J. B., Adom, F. K., Sather, N. F. & Han, J. in Commercializing Biobased Products: Opportunities, Challenges, Benefits, and Risks (ed. Snyder, S. W.) 258–284 (RSC, 2016).

  53. 53.

    Hauschild, M. Z. Better – but is it good enough? On the need to consider both eco-efficiency and eco-effectiveness to gauge industrial sustainability. Procedia CIRP 29, 1–7 (2015).

    Article  Google Scholar 

  54. 54.

    Towler, G. & Sinnott, R. in Chemical Engineering Design 2nd edn (eds Towler, G. & Sinnott, R.) 307–354 (Butterworth-Heinemann, 2013).

  55. 55.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2, 81–98 (2015).

    Article  Google Scholar 

  56. 56.

    Fantke, P. & Illner, N. Goods that are good enough: introducing an absolute sustainability perspective for managing chemicals in consumer products. Curr. Opin. Green Sustain. Chem. 15, 91–97 (2019).

    Article  Google Scholar 

  57. 57.

    From the Sugar Platform to Biofuels and Biochemicals (European Commission Directorate-General Energy, 2015).

  58. 58.

    Cathay Industrial Biotech Ltd. Cathay Industrial Biotech Ltd. announces ground-breaking and agreement signing for significant expansion in bio-produced monomer and polyamide production. PR Newswire / Cision Communication Cloud (June 2016).

  59. 59.

    Aeschelmann, F. & Carus, M. Bio-based Building Blocks and Polymers (nova-Institut GmbH, 2016).

  60. 60.

    Bohlmann, G. M. Biodegradable packaging life-cycle assessment. Environ. Prog. 23, 342–346 (2004).

    CAS  Article  Google Scholar 

  61. 61.

    Shen, L., Worrell, E. & Patel, M. K. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels Bioprod. Bioref. 6, 625–639 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Adom, F. K. & Dunn, J. B. Life cycle analysis of corn-stover-derived polymer-grade l-lactic acid and ethyl lactate: greenhouse gas emissions and fossil energy consumption. Biofuels Bioprod. Bioref. 11, 258–268 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Ingrao, C. et al. Polylactic acid trays for fresh-food packaging: a carbon footprint assessment. Sci. Total Environ. 537, 385–398 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    van der Harst, E., Potting, J. & Kroeze, C. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Sci. Total Environ. 494–495, 129–143 (2014).

    Article  CAS  Google Scholar 

  65. 65.

    Gaudreault, C., Samson, R., Chambost, V. & Stuart, P. LCA for the engineering analysis of the forest biorefinery. Appita J. 63, 206–230 (2010).

    CAS  Google Scholar 

  66. 66.

    Vink, E. T. H., Davies, S. & Kolstad, J. J. The eco-profile for current Ingeo® polylactide production. Ind. Biotechnol. 6, 212–224 (2010).

    CAS  Article  Google Scholar 

  67. 67.

    Landis, A. E. in Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications (eds Auras, R. et al.) 431–441 (John Wiley and Sons, 2010).

  68. 68.

    Gironi, F. & Piemonte, V. Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environ. Prog. Sustain. Energy 30, 459–468 (2011).

    CAS  Article  Google Scholar 

  69. 69.

    Vink, E. T. H., Rábago, K. R., Glassner, D. A. & Gruber, P. R. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym. Degrad. Stabil. 80, 403–419 (2003).

    CAS  Article  Google Scholar 

  70. 70.

    Vink, E. T. H., Glassner, D. A., Kolstad, J. J., Wooley, R. J. & O’Connor, R. P. The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind. Biotechnol. 3, 58–81 (2007).

    CAS  Article  Google Scholar 

  71. 71.

    Tecchio, P., Freni, P., De Benedetti, B. & Fenouillot, F. Ex-ante life cycle assessment approach developed for a case study on bio-based polybutylene succinate. J. Clean. Prod. 112, 316–325 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Adom, F., Dunn, J. B., Han, J. & Sather, N. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts. Environ. Sci. Technol. 48, 14624–14631 (2014).

    CAS  Article  Google Scholar 

  73. 73.

    Lane, J. The DOE’s 12 top biobased molecules – what became of them? BiofuelsDigest (April 2015).

Download references


This work was supported by the EU FP7 project Biorefine 2G (grant 613771) and by the Novo Nordisk Foundation. We thank S. Sukumara, A. Garcia Sancho and N. Kirchhübel for input to an earlier manuscript draft.

Author information




Ó.Ö. and P.F. organized and structured the work and wrote the manuscript. Ó.Ö. gathered, processed and visualized the data. P.F. contributed to data analysis and visualization, and provided overall guidance. M.J.H., J.F. and M.Z.H. provided background information and edited the manuscript.

Corresponding author

Correspondence to Peter Fantke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ögmundarson, Ó., Herrgård, M.J., Forster, J. et al. Addressing environmental sustainability of biochemicals. Nat Sustain 3, 167–174 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing