Heat exposure and global air conditioning

Abstract

Air conditioning adoption is increasing dramatically worldwide as incomes rise and average temperatures go up. Using daily temperature data from 14,500 weather stations, we rank 219 countries and 1,692 cities based on a widely used measure of cooling demand called total cooling degree day exposure. India, China, Indonesia, Nigeria, Pakistan, Brazil, Bangladesh and the Philippines all have more total cooling degree day exposure than the United States—a country that uses 400 terawatt-hours of electricity annually for air conditioning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global CDDs.

Data availability

This research relies entirely on publicly available data. Detailed information on all sources is available in the Supplementary Information, and additional results and other materials are available in the Supplementary Data. Source data for Fig. 1 are provided with the paper.

Code availability

All code and related materials used in the analysis are available as Supplementary Software.

References

  1. 1.

    Gertler, P., Shelef, O., Wolfram, C. & Fuchs, A. The demand for energy-using assets among the world’s rising middle classes. Am. Econ. Rev. 106, 1366–1401 (2016).

    Article  Google Scholar 

  2. 2.

    Wolfram, C., Shelef, O. & Gertler, P. How will energy demand develop in the developing world? J. Econ. Perspect. 26, 119–137 (2012).

    Article  Google Scholar 

  3. 3.

    Auffhammer, M. & Wolfram, C. Powering up China: income distributions and residential electricity consumption. Am. Econ. Rev. 104, 575–580 (2014).

    Article  Google Scholar 

  4. 4.

    Davis, L. & Gertler, P. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl Acad. Sci. USA 112, 5962–5967 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Park, J. R., Goodman, J., Hurwitz, M. & Smith, J. Heat and learning. Am. Econ. J. Econ. Policy. (in the press).

  6. 6.

    Burgess, R., Deschenes, O., Donaldson, D. & Greenstone, M. Weather, Climate Change and Death in India. Working Paper (2017).

  7. 7.

    Carleton, T. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits. Working Paper (Univ. Chicago, 2018).

  8. 8.

    Barreca, A., Clay, K., Deschênes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the U.S. temperature–mortality relationship over the twentieth century. J. Polit. Econ. 124, 105–159 (2016).

    Article  Google Scholar 

  9. 9.

    Waite, M. et al. Global trends in urban electricity demands for cooling and heating. Energy 127, 786–802 (2017).

    Article  Google Scholar 

  10. 10.

    Wenz, L., Levermann, A. & Auffhammer, M. North–South polarization of European electricity consumption under future warming. Proc. Natl Acad. Sci. USA 114, E7910–E7918 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Auffhammer, M., Baylis, P. & Hausman, C. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl Acad. Sci. USA 114, 1886–1891 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Slade, M. The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning (OECD/IEA, 2018).

  13. 13.

    Shah, N. et al. Opportunities for Simultaneous Efficiency Improvement and Refrigerant Transition in Air Conditioning. Working Paper (Lawrence Berkeley National Laboratory, 2017).

  14. 14.

    Sivak, M. Potential energy demand for cooling in the 50 largest metropolitan areas of the world: implications for developing countries. Energy Policy 37, 1382–1384 (2009).

    Article  Google Scholar 

  15. 15.

    Sivak, M. Will air conditioning put a chill on the global energy supply? Am. Sci. 101, 330–333 (2013).

    Article  Google Scholar 

  16. 16.

    Petri, Y. & Caldeira, K. Impacts of global warming on residential heating and cooling degree-days in the United States. Sci. Rep. 5, 12427 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Atalla, T., Gualdi, S. & Lanza, A. A global degree days database for energy-related applications. Energy 143, 1048–1055 (2018).

    Article  Google Scholar 

  18. 18.

    Isaac, M. & Van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  19. 19.

    McNeil, M. A. & Letschert, V. E. Modeling diffusion of electrical appliances in the residential sector. Energy Buildings 42, 783–790 (2010).

    Article  Google Scholar 

  20. 20.

    Baumert, K. & Selman, M. Data note: heating and cooling degree days. World Resources Institute (2003).

  21. 21.

    Auffhammer, M. & Aroonruengsawat, A. Simulating the impacts of climate change, prices and population on California’s residential electricity consumption. Clim. Change 109, 191–210 (2011).

    Article  Google Scholar 

  22. 22.

    Deschênes, O. & Greenstone, M. Climate change, mortality, and adaptation: evidence from annual fluctuations in weather in the U.S. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).

    Article  Google Scholar 

  23. 23.

    Biddle, J. Explaining the spread of residential air conditioning, 1955–1980. Explor. Econ. Hist. 45, 402–423 (2008).

    Article  Google Scholar 

  24. 24.

    Akpinar-Ferrand, E. & Singh, A. Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India. Environ. Sci. Policy 13, 702–712 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Gupta, E. Global warming and electricity demand in the rapidly growing city of Delhi: a semi-parametric variable coefficient approach. Energy Econ. 34, 1407–1421 (2012).

    Article  Google Scholar 

  26. 26.

    Abhyankar, N., Shah, N., Park, W. Y. & Phadke, A. Accelerating Energy Efficiency Improvements in Room Air Conditioners in India: Potential, Costs–Benefits, and Policies. Working Paper LBNL-1005798 (Lawrence Berkeley National Laboratory, 2017).

  27. 27.

    World Energy Outlook 2018 (OECD/IEA, 2018).

  28. 28.

    Newell, R. G., Jaffe, A. B. & Stavins, R. N. The induced innovation hypothesis and energy-saving technological change. Q. J. Econ. 114, 941–975 (1999).

    Article  Google Scholar 

  29. 29.

    Acemoglu, D. & Linn, J. Market size in innovation: theory and evidence from the pharmaceutical industry. Q. J. Econ. 119, 1049–1090 (2004).

    Article  Google Scholar 

  30. 30.

    Georgescu, M., Morefield, P. E., Bierwagen, B. G. & Weaver, C. P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl Acad. Sci. USA 111, 2909–2914 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Barreca, A. Climate change, humidity, and mortality in the United States. J. Environ. Econ. Manage. 63, 19–34 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors have not received any financial compensation for this project, nor do they have any financial relationships that relate to this research. We are grateful to seminar participants at the University of California, Berkeley for helpful feedback.

Author information

Affiliations

Authors

Contributions

All authors conceptualized the research. L.T.B. collected, processed and cleaned the data. L.T.B. constructed the figures and tables. All authors contributed to writing, reviewing and editing the manuscript.

Corresponding author

Correspondence to Lucas W. Davis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–9, discussion, methods and references.

Supplementary Data

Complete country- and city-level lists of CDDs.

Supplementary Software

CDD_code_20191018.R corresponds to the code used for the main analysis, while cdd_extraction_tutorial.pdf provides a tutorial for readers who would like to work with 5 km_18C.tif (see Source Data Fig. 1).

Source data

Source Data Fig. 1

Raster file used to generate Figure 1. It contains average annual CDDs from 2009 to 2018 at a 5 km by 5 km resolution.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biardeau, L.T., Davis, L.W., Gertler, P. et al. Heat exposure and global air conditioning. Nat Sustain 3, 25–28 (2020). https://doi.org/10.1038/s41893-019-0441-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing